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THE CLASSICAL TO QUANTUM TRANSITION

by

P. S. Signell

1. Introduction and Overview

The goal here is to understand how the classical Bohr model of the
atom failed and to develop its successor, the Schrödinger Equation. To
these ends we first examine the failure of the classical orbital model in
some detail, while picking up useful ideas and terminology. We then deter-
mine a criterion for introducing necessary changes in the theory and use it
to construct the Schrödinger Equation for potential- less regions of space.
After a quick application to see how the new theory overcomes the prob-
lems associated with its predecessor, we move on to the full Schrödinger
Equation with forces. Solutions are obtained for the simple harmonic
oscillator.

2. Classical Attempt and Failure

2a. Similarities: Electron-Proton, Earth-Sun Systems. As a
first attempt to determine the basis of atomic structure one would cer-
tainly try to capitalize on the similarities between the earth-sun system
and the hydrogen atom, that simplest of all atomic systems. In this atom,
the central proton is almost 2,000 times heavier than the electron, which
means that to a very good approximation the proton’s position can be
taken to be the center of mass of the atom.1 In this respect, it is similar to
the earth-sun system. Furthermore, the force keeping the electron bound
to the proton in the hydrogen atom is just the Coulombic interaction, an
inverse square law, again as in the earth-sun system:

~Fep = −(
e2

4πε0
)(

1

r2
) r̂ = −(1.44 eVnm)(

1

r2
) r̂ (1)

~FES = −(γMEMS)(
1

r2
) r̂ = −(4.95× 1072 eVnm)(

1

r2
) r̂ (2)

Thus the forces for the earth-sun and electron-proton systems differ only
by their (constant) strength factors.

1See “Two-Body Kinematics and Dynamics” (MISN-0-45).
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2b. Orbital Radius From System Energy. If the hydrogen atom’s
electron obeys Newton’s Second Law, just as does the earth as it orbits the
sun, then the electron should traverse an orbit similar to the earth’s but
reduced in size. What size would that be? Since we experimentally know2

the energy of the ground state of the hydrogen atom, E0 = −13.6 eV, a
good method for finding the radius would be to obtain it from that energy.
In the earth-sun system, assuming a circular orbit, one can easily relate
the radius and energy by combining Newton’s Second Law for centripetal
acceleration with the Law of Universal Gravitation,

MEv
2
E/r0 = γMEMS/r

2
0, (3)

eliminate the velocity in the energy expression

E0 =
1

2
MEv

2
E − γMEMS/r0

and substituting for the (MEv
2) term gives

r0 = − (γMEMS)

2E0

. (4)

Since the energy of a bound object like the earth is negative3 we can
write:

r0 =
(γMEMS)

2|E0|
The relation of r0 and E0 to the earth’s potential energy V (r) is illus-
trated in Fig. 1. To find the radius of the electron’s presumed orbit in the
hydrogen atom, we need only compare equations (1) and (2) for the two
force laws, then alter Eq. (4) to make it an energy-radius relation for the
electron-proton system:

r0 = (
e2

4πε0
)

1

2|E0|
. (5)

With E0 = −13.6 eV, r0 (H ground state) = 0.053 nm. This r0 is called
the Bohr radius. It was first calculated by A.Bohr, using a somewhat
different method.4

2See “Hydrogen-like Energy Levels” (MISN-0-215) and “Transitions and Spectral
Analysis” (MISN-0-216).

3See “Potential Energy and Motion: Potential Curves, Turning Points” (MISN-0-
22).

4The notation r0 for the Bohr radius is somewhat misleading since n = 1 for that
state. It is traditional, however, to use zero as a subscript on all ground state quantities.
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E0

r0
r

V(r)

Figure 1. Energy versus radius
for an inverse square law force. A
typical bound state radius and en-
ergy are marked.

2c. Erroneous Prediction: Synchrotron Radiation. There are
two major problems associated with the classical orbital model of the
hydrogen atom, problems which did not arise in the application to the
solar system. The first is related to the very large centripetal accelera-
tion of the electron in the hydrogen atom, some 1025 times that of the
earth in its orbital motion. Classical electromagnetic theory predicts, and
experiment confirms, that all charged particles emit electromagnetic en-
ergy when macroscopically accelerated. Such light emitted by circularly
orbiting charged particles is called synchrotron radiation because it is a
constant fact of life for those using synchrotrons, devices in which beams
of electrons travel in circular evacuated tubes. In order to make up for the
electrons’ continual loss of energy by synchrotron radiation, energy must
be constantly fed to the particles. In the ground state of the hydrogen
atom, contrary to what happens in a synchrotron, the electron does not
emit synchrotron radiation. In fact, no loss of energy of any kind has ever
been observed for a hydrogen atom ground state electron.

2d. Erroneous Prediction: Continuous Energies and Radii. A
second problem associated with the orbital atomic model is that classical
orbits can be at any negative energy and hence at any radius. However, it
is well established experimentally5 that in the hydrogen atom only those
energies occur which satisfy the Bohr formula:

En = −
(

e2

4πε0

)2
me

2h̄2n2
;

This discrete set of allowed energies implies a discrete set of allowed orbits.
For circular orbits, one straightforwardly finds the allowed radii to be:

rn = n2r0; n = 1, 2, 3, . . .

5See “Transitions and Spectral Analysis” (MISN-0-216).
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where r0 is the Bohr radius. Every hydrogen atom is found to have exactly
the same discrete set of energies, and they are not changed as a result of
collisions. This is in sharp contrast to the binary gravitational systems
such as the Earth and the sun, Mars and the sun, etc.

2e. Summary of the Classical Orbital Models Problems. One
can summarize the two erroneous predictions of the classical orbital model
as saying that an electron in the ground state of the hydrogen atom would
lose energy by synchrotron radiation and thus quickly and continuously
spiral in toward the proton. This predicted quick collapse of the hydrogen
atom does not, in fact, take place; the ground state is completely stable
and so the classical orbital model is wrong.

3. The Schrödinger Equation for V=0

3a. Wave Properties of Electron May Be Important. One might
expect that since the hydrogen atom Bohr radius is so extremely small,
it might be comparable to the deBroglie wavelength of the electron. If
that is true, then one would expect the wave properties of the electron
to be important and classical particle mechanics would certainly fail to
describe the electron in the hydrogen atom.6

3b. Wavelength of Electron: Larger Than Bohr Radius. It is
easy to compute the deBroglie wavelength of the hydrogen atom ground
state electron. If the wavelength is small compared to the Bohr radius
then classical mechanics should decsribe the situation well. If fact, how-
ever, the wavelength so computed turns out to be larger than the Bohr
radius! It is then obvious7 that wave properties are important and the
question becomes one of how to set up a new mechanics which builds-in
the deBroglie wave properties and yet reduces to the classical descrip-
tion when the wavelength is small compared to the size of the interaction
region.

3c. Example of a Wave Function. For sound waves or waves on
a string, the one-dimensional spatial dependence of standing waves is
usually written:8

ψ(x) = A sin(2πx/λ). (6)

6See “The Time-Dependent Schrödinger Equation: Derivation of Newton’s Second
Law” (MISN-0-248), wherein Newton’s Second Law is found to be the first term in a
power series, the next term of which is computed and examined. Thus the relationship
of quantum and classical mechanics is made precise.

7See “deBroglie Waves” (MISN-0-240).
8See “Wave Equations and Solutions” (MISN-0-201).
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We will assume that standing waves, not traveling waves, are appropriate
to the case of a bound state, where the bound particle stays in the region
around the force center.

3d. deBroglie’s Relation to Schrödinger Equation. Taking the
second derivative of ψ with respect to x and applying deBroglie’s relation
between momentum and wavelength, we get:

d2ψ(x)

dx2
= − p

2

h̄2
ψ(x). (7)

For any spatial point x where the potential energy function for the parti-
cle, V(x),9 is zero Eq. (7) becomes:

− h̄2

2m

d2ψ

dx2
= Eψ; V (x) = 0. (8)

and E is the particle’s total energy. Eq. (8) is the equation Schrödinger
found for a particle at any point where V = 0.

3e. Rules for Constructing the Schrödinger Equation. We have
made a plausible argument for Eq. (8) but quantum mechanics is more
general than classical mechanics and so cannot be derived from it. Quan-
tum mechanics, and the Schrödinger equation in particular, arises from a
set of rules from which one can properly derive both classical and quantum
effects. Here are the rules by which the Schrödinger equation is usually
constructed for a single particle in a potential V :

(i) Write down the classical energy equation,

E =
p2

2m
+ V .

(ii) Multiply on the right by the wave function ψ(x),

Eψ =
p2

2m
ψ + V ψ; (9)

where ψ is to be determined later, and;

(iii) Replace each component of the momentum by the corresponding
momentum derivative operator:

px = −ih̄ d

dx
,

9Sometimes written U(x).
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py = −ih̄ d
dy
, (10)

pz = −ih̄
d

dz
.

For our one-dimensional x-axis case, with zero potential, the above three
rules immediately reproduce Eq. (8).

We must now examine methods of solving Eq. (8) for cases of interest,
and especially see if it solves the problems encountered by the classical
orbital model of the atom.

4. Limited Free Motion: Quantization

4a. Impenetrable Walls. A very crude model that exhibits some
of the features of bound states is shown in Fig. 2, where a particle is
constrained to one-dimensional motion in the interval −a < x < a by
impenetrable walls at its boundaries. The fact that the walls are impen-
etrable means that ψ(x) is zero inside them, since |ψ|2 is the particle’s
probability density10 and the probability of finding the particle inside the
impenetrable walls is presumably zero.

4b. Boundary Conditions At Walls. The wave function ψ(x) must
be point-wise continuous,11 so we have the boundary conditions on the
wave function in the free region:

ψ(±a) = 0. (11)

10See “deBroglie Waves” (MISN-0-240), “The Uncertainty Principle” (MISN-0-241)
and “Exponential Quantum Decay Through a Barrier” (MISN-0-250).

11Justification for the continuity of ψ(x) involves replacing the walls by finite repul-
sive potentials and then letting them become infinite.

-a 0 a

walls

x

Figure 2. Rudimentary model
of a bound state; for illustrating
quantization of energy.
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-a 0 a

y1 y2

x
Figure 3. The first two wave
functions of Eqs. (13).

4c. Schrödinger Equation General Solution in Free Region.
The general. solution to the Schrödinger Eq. (8) in the free region between
the walls of Fig. 2 is easily verified by differentiation to be:

ψk(x) = A(k) sin kx+B(k) cos kx, (12)

where k ≡
√

2m|E|/h̄.
4d. Apply the Boundary Conditions. There are two integration
constants, A and B, because of the second derivative in the Schrödinger
equation: at any given energy these two constants are determined by the
boundary conditions, Eq. (11). One can go through algebraic manipula-
tions (Appendix A) or merely draw sine and cosine waves between the
walls which obey the boundary conditions, as illustrated in Fig. 3.

The wave functions are:

ψ1(x) =
1√
a
cos(

πx

2a
);

ψ2(x) =
1√
a
sin(

2πx

2a
); (13)

ψ3(x) =
1√
a
cos(

3πx

2a
);

etc., where the factors (1/
√
a) come from the requirement that the wave

functions be normalized. This means that the wave functions contain a
multiplying factor such that the total probability of finding the particle
in the interval −a < x < a is 100%:

1.00 =

∫ +a

−a

Pn(x) dx =

∫ +a

−a

|ψn(x)|2 dx.

11
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4e. Energy is Quantized. Comparing equations (12) and (13), one
sees that the energies are restricted to the values:

En =
h̄2π2n2

8ma2
;n = 1, 2, 3, . . . (14)

The energy is said to be quantized, meaning that it is restricted to a set
of discrete values.12

5. Quantization From Realistic Forces

5a. Concept of Cut-Off Radius. How can we apply our Schrödinger
Eq. (8), valid only where the potential energy is zero, to the real world
with forces which produce bound states? Fortunately, realistic forces
generally become negligibly small beyond some finite radius from the force
center. An arbitrarily-drawn example is shown in Fig. 4. We can make
the good approximation of setting the potential equal to zero beyond a
cut-off radius rc, and then use our V = 0 Schrödinger equation in the
outside region.

5b. Central Forces. Most interesting forces are central forces, spheri-
cally symmetric about their force centers. We will consider one such force,
using its force center as origin and not worrying about its shape inside
rc. If you want, you can picture the force as the Coulombic one between
the electron and the proton for a hydrogen atom in its ground state. A
reasonable value for the cut-off radius might be 20 Bohr radii. That is,
20 times the classical turning point radius for energy E0.

12The only way one can make a new wave function for Fig. 3 is by inserting at least
a half more oscillation into one of the wave functions. This results in quantized wave
function curvatures, hence quantized wave function second derivatives, hence quantized
energies.

r
rc

V(r)

Figure 4. An example potential
illustrating the concept of cut-off
radius (rc).
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5c. The Schrödinger Equation in Three Dimensions. Our pre-
vious Schrödinger equation was in one dimension, but realistic forces are,
of course, in a three-dimensional world. Following the three rules given
in Section 2, we get:

Eψ(x, y, z) = − h̄2

2m
(
d2

dx2
+

d2

dy2
+

d2

dz2
)ψ(x, y, z), V = 0; (15)

written in the abbreviated form:

Eψ = − h̄2

2m
~∇2ψ. (16)

5d. The Radial Wave Equation. In spherical coordinates the
Schrödinger equation becomes13 (Appendix B):

Eu(r) = − h̄2

2m

d2u(r)

dt2
, V (r) = 0, (17)

where u(r) is called the radial wave function. So that the solution to
Eq. (17) is also a solution to the original Eq. (16) we have to require u(r)
to vanish at the origin:14

u(0) = 0. (18)

5e. The Radial Probability Density. The radial probability density
P (r) is obtained from the radial wave function u(r) in the usual manner:

P (r) = |u(r)|2.

This means that the probability of finding the particle between spherical
shells of radius r1 and r2 is:

P (r1 < r < r2) =

∫ r2

r1

P (r) dr =

∫ r2

r1

|u(r)|2 dr.

The normalization integral becomes:

1.00 =

∫

∞

0

|u(r)|2 dr,

with a lower limit which differs from that in the one-dimensional case.
13The rest of the discussion in this section is restricted to states of zero angular

momentum, not a significant restriction for present purposes.
14Not to be explained further here, except that otherwise the ∇2 operator in the

right side of Eq. (16) would produce a delta function which could not be matched on
the left side of the equation.

13
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k1
k2k3

Figure 5. The function
A(κ) for the electron-
proton Coulomb interac-
tion cut off at rc = 30r0.
The dots along the κ-axis
mark the Bohr formula
(rc →∞) values.

5f. Integration Constants For the Radial Equation Solutions.
Since our radial Schrödinger Eq. (17) still contains a second derivative
we would expect to have two integration constants in the solution, one
determined by the boundary condition at the origin, Eq. (18), and the
other determined by some other boundary condition. The integration
constants would, in general, be different at each energy.

5g. Bound State Solution Beyond Cut-Off Radius. Bound states
have negative energies so it is convenient to define

κ ≡
√
−2mE/h̄ =

√

2m|E|/h̄, (19)

and put our radial Schrödinger Eq. (17) into the form:

d2u(r)

dt2
= κ2u(r);E < 0, V (r) = 0. (20)

The solution to Eq. (20) can be seen by inspection (taking the derivatives
mentally) to be:

u(r) = A(κ)eκr +B(κ)e−κr;E < 0, V (r) = 0. (21)

As noted, this is the solution for all negative energies and for all
continuously-connected space points outside the range of the potential.

5h. Boundary Conditions Lead to Discrete States. The proba-
bility that the particle would be found to be outside the cut-off radius
is:

P (rc) < r <∞) =

∫

∞

rc

|u(r)|2 dr =
∫

∞

rc

|A(κ)eκr +B(κ)e−κr|2 dr.

which is infinite because of the exponentially rising term. This is an ob-
vious absurdity since most of the probability should be within the range

14



MISN-0-242 11

of the force, and especially since the total probability of being somewhere
in all of space must be unity! The wave function (21) is said to be unnor-
malizable for non-zero values for A since these do not permit the particle
to have merely 100% probability of being somewhere in all of space. The
only way in which the radial wave function (21) can represent a bound
state of a physical system is for A(κ) to be zero. This, then, consti-
tutes the second boundary condition necessary to completely specify the
wave function everywhere. In general, no matter what potential is used,
A(κ) is some function determined by the nature of the force in the region
0 < r < rc. Suppose that for some particular force A(κ) has the func-
tional form shown in Fig. 5.15 These are a discrete set, so the bound-state
solutions are at those values of κ where A(κ) = 0, labeled κ1, κ2, . . ., in
the figure. The bound states produced by the Schrödinger equation are
discrete regardless of what force is present.
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A. Boundary Conditions on a Free Wave

We begin with the free-particle solutions, Eq. (12):

ψk(x) = A(k) sin kx+B(k) sin kx,

and apply the impenetrable-walls simultaneous boundary conditions

ψ(±a) = 0.

These two conditions yield, respectively;

0 = +A(k) sin ka+B(k) cos ka,

0 = −A(k) sin ka+B(k) cos ka.

How can we make both equations be satisfied simultaneously? There are
four minimum possibilities:

15See “Numerical Solution of the Schrödinger Equation for the Hydrogen Atom”
(MISN-0-245), in which is developed the computer algorithm used to generate Fig. 5
of the present unit.
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(i) A(k) = B(k) = 0,

(ii) A(k) = cos ka = 0,

(iii) B(k) = sin ka = 0,

(iv) sin ka = cos ka = 0.

The first of these can be immediately eliminated because it results in ψ =
0 everywhere, and the fourth is impossible to satisfy. The two possibilities
are left:

(i) A = 0 and cos ka = 0 hence ka =
nπ

2
; n = 1, 3, 5, . . .

(ii) B = 0 and sin ka = 0 hence ka =
nπ

2
; n = 2, 4, 6, . . .

In general, then, k =
nπ

2
; n = 1, 2, 3, . . .. Substituting these combinations

into Eq. (12) produces the allowed wave functions of Eq. (13).

B. Laplacian In Spherical Coordinates

Ba. Laplacian in Spherical Coordinates. By judicious use of:16

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ,

one can derive the equality:17

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

=
1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2

)

16See, for example, Methods of Theoretical Physics, P.M.Morse and H. Feshbach,
McGraw-Hill, NY (1953).

17Note the change of notation for the derivatives, to agree with common usage, from
that used in Eq. (15). There is no operational distinction between the two notations
for the case at hand, where the coordinate components are entirely independent of
each other.

16
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Bb. The Radial Equation. By the method of separation of coordi-
nates, one finds the solutions to be of the form:18

ψn`m(r, θ, ϕ) = Rn`(r)Y`m(θ, φ)

where

Y`m(θ, ϕ) ≡
√

(

`+
1

2

)

(`−m)!

(`+m)!
Pm
` (cos θ)

1√
2π
eimφ

Pm
` =

(1− z2)m/2

2``!

dm+`

dzm+`
(z2 − 1)`;

where: m, ` = 0, 1, 2, . . .; m ≤ `. If one defines

un`(r) ≡ rRn`(r),

then the equation for un`(r) for a potential V (r) is:

(

− h̄2

2m

d2

dr2
+
`(`+ 1)h̄2

2mr2
+ V (r)

)

un`(r) = Enun`(r).

The second term in the brackets is the quantum-mechanical equivalent of
the classical angular-motion kinetic-energy term.19

Bc. The Boundary Condition at the Origin. The boundary con-
dition at the origin is determined by an unusual property of the Laplacian
operator when acting on an inverse-radius function.

To see this, suppose the radial wave function approaches a constant
as the radius approaches zero:

lim
r→0

u(r)→ a. (22)

The full wave function approaches that constant divided by the radius:

lim
r→0

ψ(r)→ a

r
.

In the full Schrödinger equation, then, one has, where this approximation
is valid;

∇2ψ = ∇2 a

r
=

1

r2
∂

∂r
r2
∂

∂r

(a

r

)

= 0, (23)

18See, for example, Methods of Theoretical Physics, P.M.Morse and H. Feshbach,
McGraw-Hill, NY (1953).

19See “Derivation of the Constants of the Motion for Central Forces” (MISN-0-58).
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except at the origin.

If one integrates the function [~∇2(a/r)] throughout a volume includ-
ing the origin, the result is:20

∫

(

∇2 a

r

)

dV = −4πa,

regardless of the size of the volume. This independence of the size of the
volume is logical in view of equation (23). Thus the radius of the volume
can be shrunk to zero and the answer (−4πa) remains.

None of the other terms in our Schrödinger equation are capable of
generating such an anomalous function in the neighborhood of the origin,
so the equation cannot be satisfied unless the constant in Eq. (22) is zero:

lim
r→0

u(r)→ 0.

20Use the divergence theorem to convert the integrand to an integral over a spherical
surface.
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