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TWO-DIMENSIONAL MOTION
by
H.T. Hudson and Ray G. Van Ausdal

1. Introduction

la. Why We Study Motion in Two Dimensions. The real world
is three-dimensional, so why do we bother with two-dimensional motion?
First, two-dimensional motion is easier to describe, easier to deal with
mathematically, and easier to sketch on a piece of flat paper. This makes
two-dimensional motion a good place for introducing concepts that are
peculiar to motion in more than one dimension. Second, many objects
actually do exhibit motion in a plane, motion that needs only two dimen-
sions for its complete description. Any motion under constant accelera-
tion can always be described in terms of just two dimensions. Even if the
acceleration is not constant, many objects still move in a plane (e.g., a
tractor on a level field, a rider on a ferris wheel).

1b. The Job at Hand. Our basic kinematical problem is to give
quantitative information about the time-dependent positions, velocities,
and accelerations of objects. This information is to be specified either
formally (“analytically”), in words, or graphically.

1lc. The Fundamental Relationship. Here are the equations that
summarize the fundamental relationships used in this module:!

position =7 (1)
displacement = A7 =7 — 7 (2)
average velocity = Up, = AF/AL (3)
inst. vel. =0 =dr/dt 4)

av. accel. = dqy = AU/AL (5)
inst. accel. = a = di/dt = d*7/dt? (6)

Equation (4) can be inverted, giving:

Ft) = /O B dt’ + 7(0). (7

1See also “Kinematics in Three Dimensions” (MISN-0-37).
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Equation (6) can be inverted, giving:

2. Analysis by Components

2a. Vector Equations Reduce to Component Equations. Equa-
tionstorefl8 are vector equations. Each equation could be rewritten as
two x and y component equations, so that the two dimensional motion
of the object could also be treated as two simultaneous one-dimensional
problems. For instance, Eq. (3) is equivalent to the two one-dimensional
equations vy ¢, = Az/At and vy, 4, = Ay/At. Equation (4) is equivalent
to the two one-dimensional equations v, = dz/dt and v, = dy/dt.

2b. Component Descriptors Relate to Actual Motion. The z
and y position, in terms of components, displacement, velocity and accel-
eration vectors can be related more graphically to the actual motion of
the object. The component description is more than a mere exercise in
mathematical symbolism.

2c. Motion of the z- and y-Component Vectors. As a particle
moves along a complicated path, as in Fig. 1, its position vector 7 and the
component vectors Z and ¢ also move. Envision in your mind how each
component vector tip moves as the particle moves from A to B.

2d. Describing the Component Motion. The one-dimensional mo-
tion of the tip of the & vector can be described? by its position z, velocity
v, and acceleration a,. Similarly, the motion of the ¥ vector can be de-
scribed by ¥, v, and a,. You can thus use two one-dimensional motions
to completely describe one two-dimensional motion.

2e. Dual Roles of Component Descriptors. The quantities x, v,
Vg, Uy, g, and a, can be used in two different ways. They can either de-
scribe the motion of the tips of the Z and ¥ vectors, or they can describe
the components of the actual displacement, velocity and acceleration vec-
tors of the moving object. Problem-solving techniques can take advantage
of this dual meaning.

2See “Kinematics in One Dimension” (MISN-0-7).
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X

Figure 1. A particle moving on a two dimensional path has
z and y component vectors that each move in one dimension.

3. Problem-Solving Techniques

3a. Methods of Specifying Information. Typically, information
about the motion of an object is specified in either analytical or graphical
form. The position, velocity or acceleration, or some combination of their
components, might be given. We can detail some differences between the
handling of analytical vs. graphical data.

3b. Analytical Method: General Approach. Equations (1)-(8)
analytically relate the variables @, ¢, and 7. If an analytical form for a(t),
¥(t) or 7#(t) can be found, the derivatives or integrals can be performed
so that @, ¥ and 7 will all be known. The path or “trajectory” of the
object can be found in the form of an equation for y(x) by eliminating
t between the equations for x(t) and y(¢t). The trajectory could also
be found by plotting (z,y) points for appropriate time values and then
drawing a smooth curve through those points.

3c. Two Special Cases. Often, an object moves in such a way that
the 2- and/or y-component vector tip moves with either constant velocity
or constant acceleration. In these cases z, vy, a, (and/or y, vy, a,) are
related by the previously derived equations for an object with one dimen-
sional constant acceleration. The need for differentiation and integration
is bypassed.

3d. Graphical Method. Sometimes the time dependence for the com-
ponents of one of the quantities @(t), ¥(¢) or 7(t) is given in graphical form.
The interpretation of the derivative as the (physical) slope of a curve and
integral as the (physical) area under a curve could then be used to find
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¥ and 7.

=Y
S

4. Examples and Cautions

4a. Sample Problem: Analytical Method. A sample problem will
illustrate the techniques of the analytical method. Suppose that you are
given that the velocity of an object is a constant 2m/s in the x-direction,
and that it increases linearly with ¢ in the y-direction: v, = (3m/s?)t.
Then:

¥(t) = (2m/s)2 + (3m/s?) tg.
The acceleration is: @i

q= d—z =02 +3m/s%§.

That is, the object has a constant acceleration in the y-direction. The
position of the particle is:

F(t) = /0 o(t") dt" + 7(0)
:/t(Qm/sa:«+3m/s2t’g))dt’+F(0)
0

=(2m/s)td + %(3 m/s%)t%g + 7(0).

If the problem further stated 7(0); for example, as “initially the object is
at r =4m, y = 5m,” we could write:

(t) = 2m/st+4m)T + (gm/52t2 +5m> 7.

The path can now be found. The above vector equation gives the com-
ponent equations: z(t) = (2m/s)t + 4m; y(t) = [(3/2) m/s?]¢? + 5m.
Solving x(t) for ¢ and substituting that into y(t) gives y(z):

()73 /g2 T —4m 2+5
i =gom 2m/s m,

which is the equation of a parabola: the object moves in a parabolic path.

Note for those interested.  The integration could have been bypassed
by noting that the x-component motion is at constant velocity and the
y-component motion is at constant acceleration. Thus z(t) and y(t) fit
the general form of the one-dimensional constant acceleration equation:
x = xo+vot+at?/2. For example, for the y-direction: a = 3m/s?, vy = 0,
o =yo =5m, s0: y =5m+ 0+ (3m/s?)t2/2.

1192
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Figure 2. The relations v,(t) and vy(t) specified graphi-
cally.

4b. Sample Problem: Graphical Method. The previous problem
could have specified the velocity components graphically, as in Fig. 2. Now
a; is the slope of the tangent line to the v,(t) curve: in this case, Fig. 2,
the slope is always zero. Similarly, a, is the slope of the v, (t) curve, which
in this case is always 3m/s?.

The x and y coordinates can be found using the area under the curve.
For example, to calculate y(1sec), Eq. (7) gives:

1s
y(ls) = / vy (t") dt’ + y(0).
0
The integral is given by the shaded area® in Fig. 2, so that:
(1s) = §m+5m— —m
) =3 =5 m

which can be verified from the previous analytical solution for y(t).

4c. The Artificial Nature of the Examples. The real world does
not usually present motion problems so neatly specified as the previous
examples. These examples have presented information as given that in
actuality must have been derived from other information. For example,
knowledge of applied forces gives information about the acceleration.*
Also, coordinate systems and initial times have been implicitly chosen.

3This area must be calculated as the “physical” area, not the geometric area. See
“The Counting Squares Technique for Numerical Integration” (MISN-0-250, Appendix
A).

4See “Particle Dynamics” (MISN-0-14).
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?fh 0

Figure 3. A cannon fires a projectile at an angle 6 above
the horizontal.

4d. Choice of Coordinates. If the coordinate system is unspecified
in a problem, you may choose to use any system you desire. The mo-
tion of the object will not depend on the coordinate system that you
use to describe the motion. Be prepared to try different coordinate sys-
tems; the “best” choice will ease the mathematical manipulation in the
problem.

5. Ballisitic Motion

5a. Falling and Free Falling. The acceleration of an object falling
above the Earth depends upon its distance from the Earth’s surface and
upon air resistance. You are familiar with this motion, for example, when
you observe a baseball in flight. If the speed of the object is sufficiently
low, the effects of the air resistance are negligible.® If the object’s path
does not vary significantly in altitude, the effects of gravity are constant.
Under these special conditions, called ballistic motion, the object is “free
falling” and will have a constant acceleration of g = 9.8 m/s? vertically
downward, and will therefore move in a plane.

5b. Ballistic Motion Example. A projectile is fired with initial
velocity ¥y making an angle 6 with the horizontal (see Fig.3). Ignore the
height of the end of the barrel.

We choose a coordinate system such that the horizontal coordinate is
x, the origin is at the cannon (so 7y = 7 = 0), and the vertical coordinate
y is positive upward (with result @ = —gg). We choose time zero to be
when the cannon was fired. Then at time zero we have:

a(0) = —gy;  9(0) = vo; 7(0) =0. (9)

SHow low is “sufficiently low”? The answer depends upon how precisely you wish
to describe the motion, and the relative magnitudes of the force of gravity and the
force of the air.
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We can get these quantities as a function of time by integrating the ac-
celeration to get the velocity and by integrating the velocity to get the
position (see Eq. (8)). The result for the velocity is:

t t
6:60+/ a(t’)dt’:{;’o—/ gdt'§ =t — gty (10)
0 0
In the following three exercises, illustrate by using or changing Fig. 4.

> Suppose gravity is turned off. Show that the object would follow a
straight-line trajectory at constant speed and that its distance from the
origin would increase linearly with time.

> suppose that gravity is increased until it is so large that its terms in
Egs. (10) overwhelm the @y terms. Show that under those circumstances
the object would appear to simply fall to the ground.

> Describe a real projectile’s path as being between the trajectories that
would result from zero gravity and from very large gravity.

5c. The Example in Cartesian Coordinates. Equations (9) and
(10) for ballistic motion can be written in terms of the projectile’s non-
accelerated z-components and constantly-accelerated y-components:

0(t) = (vg cosby) & + (—gt + vosinby) 7,

7(t) = vot cos o3 + (—gt? /2 + vot sinbp) 9.
Notice that each component can be integrated separately because the

Cartesian unit vectors are independent of time (they stay fixed as time
progresses).

5d. Equation of the Path: the Trajectory. The Cartesian trajec-
tory equation, y(z), can be found by eliminating ¢ in the two equations
x(t) and y(t). From the above we get:

z(t) = vt cos by,

and
y(t) = —gt*/2 + vot sinfy .

Solving the first for ¢ and substituting that into the second, gives
y= [7g/(2vg cos? 60)] 22 + [tan 6] z .
This is the equation of a parabola, which is indeed the path of a projectile

undergoing idealized ballistic motion (see Fig.4).

1195

X

vY [ Vy

Figure 4. An object in ballistic motion follows a parabolic
trajectory. The acceleration and velocity are indicated at
three different places. Noticer how the object “falls” as it
moves from left to right.

5e. The Range. The trajectory equation, y(z), is useful in answering
questions that relate to position coordinates only. Will the object clear
a wall? How far will it go? How high will it go? For example, the range
R of a ballistic missile is the distance travelled in x before the projectile
strikes the ground. In Fig.4, x is R when y(x) = 0. Thus you can set
y(R) = 0 in the quadratic expression,

y(z) = [fg/(ng cos? 0)] 22 + [tanf] z,
and, using the identity sin 260 = 2sin 6 cos 6, find:

_ 2ugsinfcos®  wjsin20
9 g

R

» This equation gives R(vg, ). Show that for any fixed vy the maximum
range occurs for § = 45°.

5f. Maximum Height of a Projectile. The equation of the path
can also be used to develop an equation relating the maximum height to
the initial velocity of the projectile. At the point of maximum height,
dy/dx = 0. Differentiating the equation for the trajectory y(z) gives
dy/dx =0 at z = (v3/g)(sin 6 cos ).

» Show that substituting this into the equation for y gives the maximum
height as Ymax = (v3sin?0)/(2g).

Acknowledgments
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PROBLEM SUPPLEMENT

» If you get really stuck on a problem, turn to the appropriate hint in
this module’s Special Assistance Supplement and then try to continue
with the solution. For example, problem la, below, has a hint in the
box labeled [S-1] in the Special Assistance Supplement. If you still can’t
solve problem la after using the hint, the [S-1] box contains a reference
to another box containing a further hint.

» Problems 11, 13-15 also occur in this module’s Model Exam.

» Look out! Units and wariables are set in different typefaces.

Help: [S-14]

1. The position of a particle is given by the expression:
7= (2m/s*)t?2 + (3m/s)ty .
a. What is the shape of the path? Help: [S-1]
b. What is the velocity at the point z = 2m, y = 3m? Help: [S-2]

2. Which of the following time-dependent positions are consistent with
a constant but non-zero acceleration? Help: [S-3]
a. (3m/s*)t3% + (1m/s?)t?g
b. 2m/s)t& + (1m)y
c. (2m/s*)t?z + (1m)y
d. (5m/s?)t%g
e. (Am)z + (3m)y
3. Which of the above (a - e, Prob. 2) correspond to constant but non-
zero velocity? Help: [S-4]

4. Which of the above (a - e, Prob.2) correspond to an object at rest?
Help: [S-5]

5. A particle has the following information given about its motion:

a-dir.: A constant velocity of 5m/s, with initial condition zy = 0 m.

y-dir.: A constant acceleration of —2m/s?, with initial conditions yo =
10m, voy = —3m/s.
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a. Recognizing that these motions fit the special cases of constant
velocity and constant acceleration, write the equations z(t), v, (¢),
ag(t), y(t), vy(t) and a,(t). Help: [S-6]

b. Write the vector equations for 7(¢), ¥(t) and d(t). Help: [S-7]

6. A particle is at rest at t = 0. After t = 0, the acceleration of the
particle is given by @ = (3m/s?)2 — (2m/s?)j. What is the shape of
the trajectory? Help: [S-8]

7. The z and y components of velocity of a particle are given below.
Vy(ms™)

50

40

30

20

10

0 10 20 30 40 50 60 70 80 90
time (s)

Vy (ms™)
30

20

10

0 | 10 20\30 40 50 60 70 80 90
10 |
-20
-30

time (s)

a. What is the average velocity over the time interval 0 < ¢ < 40s?
Help: [S-9]
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b. What is the acceleration at ¢ = 20s? Help: [S-10]

c. What is the average acceleration over the interval 20s < ¢ < 60s?
Help: [S-11]

8. A parachutist jumps from an airplane at a height of 300m. The
parachute immediately opens and she descends at a constant rate of
8m/s. As she descends, a steady wind of 3m/s is blowing toward the
south. How far south of the point where she left the airplane will the
parachutist strike the earth? Help: [S-12]

9. A particle starts from rest and moves with constant acceleration @ =
AZ+ By, where A and B are constants. Show that the average velocity
over the time interval 0 to ¢ is half the instantaneous velocity at t.

Help: [S-13]

10. A boy stands on an inclined surface which makes an angle of 30°
with the horizontal (see sketch). He throws a ball so that it leaves
his hand horizontally, down near the surface of the incline, with a
speed of 10m/s. At what distance down the incline (measured from
the boy) will the ball strike the incline? (Assume he releases the ball
from a point at the surface and assume that the only acceleration is
that of gravity.)

11. The velocity of a particle is given by the expression:
U=1[2(t/s)Z + g]m/s.

a. At t = 0 the particle is at x = 0, y = 0. What is the position of
the particle at a later time ¢7

b. What is the average velocity over the interval t = 2s to t = 37

12. A particle moves with position vector
. AP 4¢3 nay
F=1l—-]2 —— —4- m.
s 3 s s )Y
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a. Plot the path on the graph below. Hint: First,

table. Help: [S-15]

t(s)

x(m) y(m)

—2.1

-2.1 -39

—-2.0

—1.0

0.0

1.0

2.0

2.1

PS-4

fill in the
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13.

14.

15.

b. On the same curve, plot the velocity at ¢ = 1s. The scale for
plotting the velocity can be any you choose. A convenient scale for
velocity is 1 unit of velocity = 1/2unit of length. Help: [S-16]

c. On the same curve, plot the velocity at ¢ = —2s. Help: [S-17]
d. On the same curve, plot the acceleration at ¢t = —1s. Help: [S-18]

A block is projected up an in-
clined surface which makes an an-
gle 0 with the horizontal. The ini-
tial speed is vy and the inclined
surface is frictionless. Use a co-
ordinate system defined by x pos-
itive to the right in a horizontal
direction, y positive up (as illus-
trated).

B

a. What is the initial velocity?

b. The acceleration of the block is observed to be:
d=—gsinf cosfi — gsin® 6.

Develop expressions for z(t) and y(t). Divide one by the other
to check that they (properly) predict that y(x) is a straight-line
function with slope tan 6.

A particle moves with acceleration:
a=[-6(t/s)°2+ (t/s)j] m/s*.

At t = 0 the particle is at rest at the origin. What is the equation of
the path (i.e., the trajectory)?

A football is thrown by a quarterback at a speed of 20m/s at
an angle of 45° with the horizontal. A receiver is running such
that he will pass under the ball downfield from the point where
it was released. Assuming the quarterback and the receiver are
the same height, and the receiver can jump or reach one meter
higher than the point of release by the quarterback, what is the
minimum distance from the quarterback the ball can be caught?

1202
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Brief Answers:

If you do not understand an answer, refer to the last comment (after the
“Hints”) in the Special Assistance Supplement for that problem.

1. a. o= (2m/s?)t%; y = (3m/s)t;
t=y/(Bm/s);
r = (2m/s?) - [y/(3m/s)]? = [2/(9m)] y?, which is a parabola.
b. From z = (2m/s?)t?, y = (3m/s)t, the particle will pass through
the point x = 2m, y = 3m at t = 1s. From part (a), 0(1s) =
(42 + 37) m/s.

2. In order to have a constant acceleration, d*7/dt> = constant.

a2 dt
¥ =2&m/s; @ = 0. This is constant, but zero.
¥ = 4t2m/s?; @ = 42 m/s?. This is constant, and # zero.

7 = 10tym/s?; @ = 10§ m/s%. This is constant and # zero.

e &0 T

v = 0; @ = 0. This is a zero acceleration and a zero velocity.
3. Answer: b.
4. Answer: e.
5. a. agy =0; v, =5m/s; . =5m/st;
ay, = —2m/s% v, = —3m/s — (2m/s?)t;
y=10m — (3m/s)t — (2m/s?)t?/2
b. #(t) = &x(t) + Jy(t) with x(¢) and y(¢) given in part a. ¥(t) =
Fvg(t) + vy (¢), ete.
6. Given: 9y = 0. Choose the origin so 7y = 0. Then:
T = (3tz — 2t§) m/s?;
7= [(3/2)t*% — t*§] m/s*.
From this,
= (3/2)t*m/s?;
y=—t’m/s%
x=—(3/2)y. X
Straight line slope = —2/3.

1204
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7. a. Ugp = (Ax/AL)T + (Ay/At)y.

The quantities Az and Ay are the respective areas under the v(t)
curves for each component. The area is just the area of a triangle.

Ax:
Area = Ax B
= (40s)(20m/s)/2 Vi(ms™)
= 400 m.
20
Ay: AN
Area 1 = displacement ssss\\\
= (20s)(20m/s)/2 » 40
Vy(ms™)
= 200 m.
Area 2 = displacement 20
(20s to 40s) ]
= (20s)(—20m/s)/2 40
= —200m. 20 > {(s)
=20 S

Total Area = Area 1 4+ Area 2 = 0.
Uap = (400m/408)Z 4+ (0m/408)§ = 10& m/s.
b. @(20s) = (dv, /dt)z + (dvy/dt)y.
Using the fact that the derivative of a straight line is the slope of
the line, @(20s) = [—(1/2)2 — 9] m/s?
C. Ggy = Av/At = [¥(60s) — ¥(20s)] / [60s — 20s]
U at t = 60units is (from the graph) (102 — 20¢) m/s.
¥ at t = 20s is (102 4 09) m/s.
Gay = —(1/2)gm/s?.

8. Let y be positive down, x be positive south.

az; =0 ay =0
vy =3m/s v, =8m/s
x=3m/st y=8m/st

The time of descent is given by putting y = 300 m, and solving for ¢:
t = 37.5s. The displacement is obtained by putting ¢ = 37.5s into
the equation for x: x = 112.5 msouth.

9. 9(t) = [, at’) dt’ +
=i [y Adt' +7 [y Bdt' +0
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10.

11.

12.

= Ati + Bty = (Ai + Bj)t

B [y o) dt!
av — t _ 0

& (1 g (1
=2 ZA 2 =Bt?
1
2

This is a very special result that holds true only for constant acceler-
ation from rest. Any other set of conditions must be treated by the
above method to find any special relation between ¥, and ().

Choose a coordinate system with axes parallel and perpendicular to
the inclined surface. Choose this coordinate system because then
it is easy to state the mathematical condition corresponding to the
ball hitting the incline: it is when (again) y = 0. In such a system
the acceleration of the ball, the acceleration of gravity, is: @ = ¢ =
—gsin30°% — gcos 30°¢. Help: [S-41]

Using the equations for constant acceleration (the origin is at the
boy):

ay = —gsin30°
vy = —gsin30°t — vgcos30°
r = —(g/2)sin30°t* — vy cos 30°t
ay = —gcos30°
vy = —gcos30°t+ vgsin30°
y = —(g/2)cos30°t? 4 vgsin 30°t

Putting y = 0 and solving for ¢ gives two solutions: either ¢t = 0 or
t = 1.18s. There are two times when the ball is at y = 0: when it
is released and when it strikes the surface. The time in question is
t = 1.18s. At this time, x = —13.62m.

a. 7(t) = [(¢/)% + (¢/ )] m
b. Uy = (5T 4+ §)m/s

a. o =tm/s
()54
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Completing the table:

) x(m) y(m) )
-2.1 =21 -39
—20 —20 -27 37
-1.0 -1.0 2.7
0.0 00 00 2
1.0 1.0 -2.7
20 20 27 v=2s) | G Y|
2.1 2.1 3.9
See the graph in part (d). _‘3 _‘2 _‘1 0 1‘ é é
t2 | x(m)
b. 7 = [:%-i— (4?—4>g m/s. ¥(ls) = Zm/s. At t = 1s, the |
particle is at # = 1m, y = —2.7m. The velocity at this time is 1
indicated on the graph. The point x = 1 m, y = —2.7m is the turn
around point and the slope dy/dxz = 0. The velocity is tangent to +
the curve.
c. ¥(—2s8) = (& + 12¢) m/s. The particle is at t = —2m, y = —2.7m 2
and the velocity is as indicated. The velocity is tangent to the T v(1s)
curve.
d.@ = 8tgm/s3. At t = —1s, @ = -8 m/s?>, T = Zm/s -3
and ¥ = (=2 + 2.79)m. The velocity is horizontal at this
point, and the acceleration is vertical. Have you noted 13 S 02 .
that v, = constant in this problem? See sketch below. - & Yo = Up COSOL + Vo SINOY

b. v = —gtsinfcos & — gt sin® 0§ + vy cos 0F + vy sin 7
With the origin chosen so that 7 = 0:

T = —%th sin 6 cos € + vgt cos b,
Y= —%th sin® 0 + vt sin 0,
x/cosf = f%gﬁ sin f + vgt, and
y/sin@ = —%gt2 sin 0 + wvgt.

Y

T
Therefore, —— = ——, y = x tan 6, a straight line.
cosf  sinf
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t 2
14. 7 =0; 9o = 0; v = [—2(t/s)3% + @g] m/s;

(t/s)*
9 M
W
6 )
_(6y/m)'?
2
or: (z/m)3 = —162(y/m)*

Tr =

15. Choose the origin at the point of release, choose § upward.
az; = 0; vy = vy, = 20 (m/s) cos45°;
x = 20(cos45°) m(t/s); ay = —g; vy = voy — gt
= [20sin45° — 9.8(t/s)| m/s;
y = [—4.9(t/s)* 4+ 20sin45°(¢/s)] m.
The range for the ball to be caught is y < 1m.

Putting y = 1 m into the equation gives these two solutions: ¢t = 2.81s
and t = 0.072s. Help: [S-42]

At t =2.81s, x =39.7m, but at t = 0.072s, z = 1.02m. Picture each
of these in your mind’s eye!
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SPECIAL ASSISTANCE SUPPLEMENT

(from PS-1a)

Find z(t), y(t) for the given 7(t). Help: [S-19]

(from PS-1b)

Find the time when z = 2m. This is the same time as when y = 3m.

(from PS-2)

@ = d*7/dt?. Help: [S-20]

(from PS-3)

7 = dF/dt.

(from PS-4)

The object is at rest if the coordinates describing its position do not
change in time. Help: [S-21]

(from PS-5a)

Partial information about each component is given. Solve for the motion
of each component vector separately. Help: [S-22]

(from PS-5b)

Using vector rotation, add the components of part (a).

(from PS-6)

The trajectory is determined by the curve of y(x) or (equivalently) x(y).
Help: [S-23]

(from PS-7a)

Average velocity is defined as: ttf o) dt'/(ta — t1) = AF/AtL.

Help: [S-24]
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(from PS-7b)

See problem 1(b). Help: [S-25]

(from PS-7c)

See problem 1(b). Help: [S-26]

(from PS-8)

a; =0 and a, = 0. Help: [S-27]

(from PS-9)

This is a constant acceleration with a- and y-components. Help: [S-28]

(from PS-head)

For example, in (t/s) the “t” is the variable “time” and the “s” is the
unit “seconds.” For example: if ¢ = 3, then (¢/s) = (3s)/(s) = 3.

(from PS-11a)

The path has zero slope at t = £1s.

S-16 (from PS-11b)

7= [x + <4’;—22 - 4> y] m/s. Help: [S-29]

(from PS-11c¢)

See method of part (b).

S-18 (from PS-11d)
@ = 8tjm/s3.

(from. [$-1])

Solve for ¢(y) and substitute into x(¢).

(rom [5-3)
a = dv/dt = (d/dt)(dr/dt). If these give trouble, review how to differ-
entiate a vector.
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(from [S-5])

To meet the above requirement, ¥ = 0 and @ = 0 for all times.

(from [S-6])

The motion of each vector is one dimensional. Help: [S-30]

(from [S-8])

x and y are components of 7. Help: [S-31]

(from [S-9])

fttf v, dt’ = area under the v, (¢) vs. t curve from ¢y to to. Help: [S-32]

(from [S-10])

a = dv/dt. Help: [S-33]

(from [S-11])
gy = [U(60s) — ¥(208)] /(60s — 20s),
v 7 [@(60s) + a@(20s)] /2. Help: [S-34]

(from [S-12])

Both v, and v, are constant. Help: [S-35]

(from [S-13])

v, = At. Help: [S-36]

(from [S-16])

U(ls) =&m/s.

(from [S-22])

Some equations for motion in one dimension with constant acceleration
are: & = x¢ + vot + at®/2, v = vg + at, v¥ = v3 + 2a(z — x0).

(from [5-23])

() = [ at [ @) dt" + 7. Help: [S-37)
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(from [S-24])

The area of a triangle is (1/2)bh. Help: [S-38]

(from [S-25])

At t = 20s, dv,/dt = —(20/40)m/s?> = —(1/2)m/s®. This problem
requires a derivative to be taken from a curve, which is the slope of the
line at the time given.

(from. [S-26])

(60s) = (102 — 207) m/s. In this problem, ¥(¢) must be found from the
graphical representations of the components. If you had trouble with
parts (b) and (c), review problem 1(b).

(from [S5-27])

The parachutist will reach the ground in 37.5s.

S-36 (from [5-28])

1 ¢
Vo = 5 Jo At'at’.

(from [S-31])

For the particle to be at rest at t =0, ¥ = 0. Help: [S-39]

(from [S-32))

If v, < 0, area has a negative sign, indicating a displacement in the
negative direction.

(from [$-37))

For simplicity, put 7o = 0. Help: [S-40]

(from. [$-39))
¥ = (3m/s?)td — (2m/s?)ty and 7(t) = fot v(t") dt’. If this problem gives
trouble, work on how to make transformations of the type x(t) < ¢(x).
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(from PS-10)

Draw a graph with a single vector extending out from the origin at an
angle of 240° CCW from the positive z-axis. Label this vector §. Then:
g = gcos240° &+ gsin 240° §. Alternatively, simply look at the diagram
and write: § = —gsin30°Z — g cos 30° 4.

(from PS-15)

We let b =t/ s so the y-equation above becomes:
4.9v* — 14.4b+ 1.0 =0.

Then solving this quadratic equation (see any high school or college
algebra book):

p_ 1A £ V/(=14.4)? —4(4.9)(1.0)

(2)(4.9)
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MODEL EXAM

1. See Output Skills K1-K2 on this module’s ID Sheet.

2. The velocity of a particle is given by the expression:
v =1[2(t/s)Z 4+ g m/s.

a. At t = 0 the particle is at x = 0, y = 0. What is the position of the
particle at a later time ¢7

b. What is the average velocity over the interval t = 2s to ¢t = 3s?

3. A block is projected up an inclined
surface which makes an angle 6
with the horizontal. The initial
speed is vg and the inclined sur-
face is frictionless. Use a coordi- I
nate system defined by x positive X
to the right in a horizontal direc- !
tion, y positive up (as illustrated).

a. What is the initial velocity?

b. The acceleration of the block is observed to be:
@ = —(gsinf cosf) & — (gsin?0) .

Develop expressions for x(t) and y(t). Divide one by the other
to check that they (properly) predict that y(x) is a straight-line
function with slope tan 6.

4. A particle moves with acceleration:
a=[—6(t/s)?z + (t/s)j] m/s>.

At t = 0 the particle is at rest at the origin. What is the equation of
the path (i.e., the trajectory)?

5. A football is thrown by a quarterback at a speed of 20m/s at
an angle of 45° with the horizontal. A receiver is running such
that he will pass under the ball downfield from the point where
it was released. Assuming the quarterback and the receiver are
the same height, and the receiver can jump or reach one meter
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higher than the point of release by the quarterback, what is the
minimum distance from the quarterback the ball can be caught?

Brief Answers:

. See this module’s tezt.

. See this module’s Problem Supplement, problem 11.
. See this module’s Problem Supplement, problem 13.
. See this module’s Problem Supplement, problem 14.

. See this module’s Problem Supplement, problem 15.
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