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FOURIER ANALYSIS - SERIES: PART II

by

R.D. Young, Dept. of Physics, Illinois State Univ.

1. Introduction

This unit is a continuation of the material which was started in the
preceding unit. The new topics include integration and differentiation of
Fourier series, Parseval’s identity, complex Fourier series, and orthonor-
mal functions and series.

2. Procedures

1. Read from the middle of page 184 to 185 of Spiegel. Read section 14.4
of Arfken.

2. Underline in the text or write out the definitions and explanations
of the terms and concepts of Output Skill K1 using an explanatory
equation where necessary. One or two sentences should be sufficient.

3. Memorize Theorem 7-2 of Spiegel.

4. Memorize and write from memory Theorem 1-11 on page 7 of Spiegel.
This theorem gives the conditions for differentiating a Fourier series
term-by-term and having the resultant series converge to the derivative
of the function. See the Supplementary Notes, item 3.

5. Read the Supplementary Notes.

6. Read these Solved Problems in Spiegel;

7.13 (Parseval’s identity)
7.14 (Differentiation and Integration)
7.24 (Orthogonal functions)

7. Solve these Supplementary Problems in Spiegel:

7.37 (Refer to 7.32b not 7.36b; differentiation)
7.38 (Parseval’s identity)∗

7.44 (Orthogonal functions)
7.49 (Orthogonal functions)
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∗ Replace 7.38b by
∞
∑

n+1

1

(2n− 1)6 =
π6

960
.

Solve Problem 14.4.1 (Integration) in Arfken.

8. Read through this following example for computing the Fourier coeffi-
cients cn in complex notation:

Let f(x) = 3x on −π ≤ x ≤ π. Compute the Fourier coefficients cn
where

f(x) =

∞
∑

n=−∞

cne
ınx

and

cn =
1

2π

∫ π

−π

f(x)e−ınx dx .

Thus

cn =
3

2π

∫ π

−π

xe−ınx dx .

From integral tables,

cn =
3

2π

[

e−ınx

−n2
(−ınx− 1)

]x=π

x=−π

and

cn =
3ı(−1)n

n
, n 6= 0

from n = 0,

cn =
3

2π

∫ π

−π

x dx = 0 .

Thus

f(x) = 3ı
∞
∑

−∞

(−1)n
n

eınx, n 6= 0 .

Of course, the Fourier coefficients can can be found by computing an
and bn and then using the formulas in the Supplementary Notes to
calculate cn.

Problem: Compute the Fourier coefficients cn using the method out-
lined in this procedure for these two cases:

i) f(x) = 1, −π ≤ x ≤ π.

ii) f(x) = x2, −π ≤ x ≤ π.
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3. Supplementary Notes

3a. Complex notation and Fourier series. Suppose f(x) satisfied
Dirichlet conditions on (−L,L). Then, at a point of continuity,

f(x) =
a0

2
+

∞
∑

n=1

(

an cos
nπx

L
+ bn sin

nπx

L

)

where

an =
1

L

∫ L

−L

f(x) cos
nπx

L
dx, n ≥ 1

and

bn =
1

L

∫ L

−L

f(x) sin
nπx

L
dx, n ≥ 1 .

By definition

cosφ =
eıφ + e−ıφ

2

and

sinφ =
eıφ − e−ıφ

2ı
.

Then

f(x) =
a0

2
+
∑

n

[

1

2
(an − ıbn)e

ınπx

L +
1

2
(an + ıbn)e

−
ınπx

L

]

=

∞
∑

n=1

(

an + ıbn
2

)

e
−
ınπx

L +
a0

2
+

∞
∑

n=1

(

an − ıbn
2

)

e

ınπx

L .

Let n be replaced by −n in the first summation. So:

f(x) =
−1
∑

n=−∞

(

a−n + ıb−n
2

)

e

ınπx

L +
a0

2
+

∞
∑

n=1

(

an − ıbn
2

)

e

ınπx

L .

Define

cn =
a−n + ıb−n

2
if n < 0

c0 =
a0

2

and

cn =
an − ıbn
2

if n > 0 .
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Then

f(x) =

∞
∑

n=−∞

cne

ınπx

L

where

cn =
1

2L

∫ L

−L

f(x)e
−
ınπx

L dx .

3b. Orthogonal functions. Equations (9), (10), (11), (12), (13), and
(15) of Chapter 7 in Spiegel are only true if the functions involved are
real. If the functions are complex as in Supplementary Problem 7.44,
then these equations need to be changed. The change to be made is
simply to include complex conjugation for one of the functions. So, the
more general equations are:

9’:
∫ b

a

A∗(x)B(x) dx = 0

10’:
∫ b

a

A∗(x)A(x) dx =

∫ b

a

|A(x)|2 dx = 1

11’:
∫ b

a

φ∗m(x)φn(x) dx = 0, m 6= n

12’:
∫ b

a

φ∗m(x)φn(x) dx =

∫ b

a

|φm(x)|2 dx = 1

13’:
∫ b

a

φ∗m(x)φn(x) dx = δmn

and

15’:
∫ b

a

ω(x)ψ∗
m(x)ψn(x) dx = δmn .

By definition, the process of complex conjugation is given as

(a+ ıb)∗ = a− ıb
where a and b are real and ı =

√
−1 .
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3c. Conditions for differentiating term-by-term. As mentioned
in Procedure 5, the conditions for differentiating a Fourier series term-
by-term and having the resultant series converge to the derivative of the
limit of the original series are listed in Theorem 1-11 on page 7 of Spiegel.
This theorem can be written in notation relevant to this Unit as follows:

Theorem 1-11. If f(x) satisfied Dirichlet conditions on (−L,L) and
is continuous at x so that the series

a0

2
+

∞
∑

n=0

(

an cos
nπx

L
+ bn sin

nπx

L

)

converges to f(x) while the series

π

L

∞
∑

n=0

n
(

an sin
nπx

L
− bn cos

nπx

L

)

is uniformly convergent in (−L,L), then

df

dx
=
π

L

∞
∑

n=0

n
(

an sin
nπx

L
− bn cos

nπx

L

)

.

3d. Normalization coefficient. Given a function ψ(x) on a ≤ x ≤ b.
The constant C is called the normalization coefficient of ψ(x) on a ≤ x ≤ b

if
ψ′(x) = Cψ(x)

∫ b

a

|ψ′(x)|2 dx = 1 .

3e. Complete set of functions. Consider a set of functions
{ψn(x)}Nn=1 defined on a ≤ x ≤ b such that the ψn(x) are an orthonormal
set with weight function ω(x). That is,

∫ b

a

ω(x)ψ∗
m(x)ψn(x) dx = δmn .

This set of functions is a complete set if no non-trivial function g(x) exists
such that

∫ b

a

ω(x)ψ∗
n(x)g(x) dx = 0
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for all n. Then, we can expand an arbitrary function f(x) defined on
a ≤ x ≤ b and satisfying certain continuity criterion as

f(x) =
∑

n

cnψn(x)

where

cn =

∫ b

a

ω(x)ψ∗
n(x)f(x) dx .

Examples:

(a)

{

√

1

2L
,

√

1

L
sin

nπx

L
,

√

1

L
cos

nπx

L

}∞

n=1

is an orthonormal and complete set on (−L,L).

(b)

{

√

2

L
sin

nπx

L

}∞

n=1

is an orthonormal and complete set on (0, L).

(c)

{

√

1

L
,

√

2

L
cos

nπx

L

}∞

n=1

is an orthonormal and complete set on (0, L).

The weight function ω(x) = 1 in each case above.
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