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Input Skills:

1. Vocabulary: centrifugal potential energy; central forces; center of
mass; frame of reference (MISN-0-58), (MISN-0-6), (MISN-0-11).

Output Skills (Knowledge):

K1. For an isolated two-body system, define these center of mass (CM)
quantities in terms of single-particle quantities: position of CM
(~R), total momentum ( ~P ), total angular momentum (~L), total
mass (M).

K2. Define these (CM-frame) quantities for an isolated two-body sys-
tem: relative separation (~r), single-particle momentum (~p), total

angular momentum (~̀), and reduced mass (µ), in terms of single-
particle quantities.

K3. Starting from single-particle equations, derive:

a. ~P = M ~̇R =const.

b. ~p = µ~̇r

c. ~F = µ~̈r

d. F = µr̈ − `2/(µr3) for central forces

e. Etot =
MṘ2

2
+

L2

2MR2
+
µr2

2
+

`2

2µr2
+V (r) for central forces

f. ~Ltot = ~L+ ~̀ where ~L = const., ~̀ = const.

K4. Show how the motions of two interacting particles are related to
the equivalent one-particle solution. Use, for example, the earth
and sun, earth and moon, earth and satellite, or a proton and an
electron.

K5. For two masses connected by a spring with spring constant k: (a)
write down the equations of motion for the masses; (b) transform
to the CM system; (c) solve for the frequency of the system; (d)
specialize the solution to M1 = M2; and (e) specialize the solution
to M2 ÀM1.
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TWO BODY KINEMATICS AND DYNAMICS

by

Peter Signell

1. Introduction

1a. Two-Body Systems. Special techniques have been developed for
predicting the future motions of two objects which interact solely with
each other. A few examples of such binary systems are: the earth and
its moon, binary stars, the hydrogen atom (an electron-proton system),
diatomic molecules, and the scattering of the elementary particles of high
energy physics. Of course, in each of these cases the interacting pair is not
completely isolated from interaction with all other objects in the universe.
However, for most of them, and under most conditions, a great deal of
insight and useful solutions can be obtained by solving the system as
though it were an isolated one. In some cases the interactions from other
objects are too small to be significant and so can be validly neglected.

1b. Incremental Solutions of Particle Dynamics. Incremental
solutions of particle dynamics rely on the application of Newton’s second
law of motion to each object separately. That is, given the mass of an
object and the net (vector) force on it, the (vector) acceleration of the
object can be computed. If one desires the trajectory the object will
follow, a knowledge of position and speed at some initial instant is needed.
Then the computed acceleration can be used to compute add-ons to the
initial velocity. The computed velocities can, in turn, be used to compute
add-ons to the initial position. In general, the force on the object will
vary according to the object’s position in space. This means that the
calculation of a trajectory add-on, resulting in a new position at a new
time, results in a new force with which to evaluate the next trajectory
add-on. Thus the trajectory can be traced out, step by step.

1c. Connected Vector Equations, Binary Systems. For the case
of two interacting particles, the general approach to particle dynamics
needs to be supplemented, both for ease of solution and for gaining in-
sight. Straightforward application of Newton’s second law to one particle
requires knowledge of the force on that particle. Since the force on it
is produced by the other particle, the magnitude and direction of that
force is dependent on the location of the other particle. One can calcu-
late the velocity and trajectory add-ons of the first particle for a small
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time interval, producing a new first-particle position at the incremented
time. However, in the computation of the force for the next time interval,
one must take into account the new position of the other particle. It has
moved, since, by the third law, it has experienced a (vector) force equal
but opposite to that experienced by the first particle. To summarize:
There is a (vector) second law of motion for each of the interacting parti-
cles, but these equations are connected by the common-but-opposite force
which produces the inter-particle interaction. The two (vector) equations
of motion must be solved simultaneously.

1d. Six Equations, Twelve Initial Conditions. For binary sys-
tems, straightforward application of the general method of particle dy-
namics results in six coupled position-component equations whose simul-
taneous solutions must be consistent with twelve specified initial condi-
tions. The six coupled equations result from, for example, taking the
Cartesian components of the two three-dimensional vector equations of
motion. Similarly, the initial three-dimensional positions and velocities of
the two particles are specified through a total of twelve initial condition
numbers.

2. The CM Frame

2a. CM-Frame Simplification of the Equations of Motion.
The general method used for simplifying the six equations of motion for
binaries is that of “going to the center of mass (CM) frame”; that is, one
solves the problem as seen from the frame of reference in which the binary
center-of-mass is at rest. This frame is inertial, so the six equations of
motion can be solved there and then be easily transformed to any other
inertial frame of interest. The advantage of the CM frame is that the six
equations of motion can there be rearranged into two decoupled sets of
three equations. One of these two sets can be solved trivially, and the
other set can be reduced to a single equation. The usual single-particle
techniques of solution can then be applied to it.

2b. Equal But Opposite Momenta. In a frame of reference in
which a binary system’s center-of-mass (CM) is at rest, not moving, the
individual (vector) momenta of the two particles turn out to be equal but
opposite. To see this, consider the earth-and-satellite system shown in
Fig. 1 at some instant of time. The vector to the system’s CM is given
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Figure 1. The CM is on the line
joining the two masses.

by:1

~R =
me~re +ms~rs

me +ms

. (1)

This point is on the line joining the masses, and its velocity is:

me~ve +ms~vs

me +ms

, (2)

as follows directly from Eq. (1) by differentiation. Now imagine moving

along at the same velocity as the CM, ~VCM . In this moving “CM” frame
of reference, the CM itself will be observed to be at rest and so its velocity
is zero:2

~V ′ =
me~ve

′ +ms~vs
′

me +ms

= 0. (3)

This means that:
me~ve

′ = −ms~vs
′,

which is usually written:
~pe

′ = −~ps
′.

Thus the CM-frame momenta are equal but opposite.

2c. Circular Motion in a Binary CM Frame. The motions of
a binary system are particularly simple in the system’s CM frame of
reference. For example, consider the case where one of the two particles
describes a circle around the CM, as in Fig. 2 (note in the figure that the
total momentum of the two particles is always zero). The other particle
must also describe a circle around the CM because the ratio of the two
particles’ distances from the CM is fixed at the ratio of their masses.3

1See “Static Equilibrium, Center of Mass” (MISN-0-6).
2Quantities measured in the CM frame are indicated by primes.
3That is, for an earth-satellite system, rs/re = me/ms. See Eq (1), ~R = 0.
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Figure 2. Two circularly orbiting particles at
several times.

Thus, for example, the earth and moon traverse concentric circular orbits
about the earth-moon CM.4

2d. General Equation of Motion. The equation of motion of each
particle in a binary system is particularly simple in the CM frame. For
example, consider the earth-satellite system shown in Fig. 3. If ~r denotes
the relative position vector to the satellite, then the earth and satellite
CM position vectors are given in terms of the relative position by:5

~rs =
me

me +ms

~r,

~re = −
ms

me +ms

~r.

Note that:
~r = ~rs − ~re

and
rs/re = me/ms.

4This point is not at the center of the earth, but is between its center and its surface.
5For a further discussion of CM see “Static Equilibrium, Centers of Force, Gravity

and Mass” (MISN-0-6).

Satellite

Earth

CM

r
`

Figure 3. An earth-satellite binary sys-
tem at some instant of time (~r is the rel-
ative position vector).
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Newton’s second law of motion can be applied to each particle. Then,
using a conveniently defined quantity called the reduced mass, µ,

µ ≡
mems

me +ms

,

we get:6

~Fs = µ~̈r (4)

~Fe = −µ~̈r.

This also demonstrates Newton’s third law of motion. Equation (4) is
mathematically identical to the equation one would get for a single fic-
titious particle of mass µ at a distance r from the origin. Of course, no
such single particle is at that radius but the equation allows us to use the
usual single-particle techniques for solution.

2e. Relative Momentum. Although the total momentum is always
zero in any system’s CM frame, the individual particle momenta generally
are not. Using an earth-satellite system as an example:

~ps = ms~̇rs = µ~̇r ≡ ~p

and
~pe = −~p.

Thus the momentum of the satellite is equivalent to that of a fictitious
particle of mass µ at a radius r from the origin. We call this the CM-frame
“relative” momentum ~p.

2f. Kinetic Energy and Angular Momentum. Applying the
single-particle definitions of kinetic energy and angular momentum sep-
arately to each object in an earth-satellite binary system, the total CM
frame quantities can be derived directly as:

~̀≡ ~̀
s + ~̀

e = ~r × ~p

and

Ek ≡ Ek,s + Ek,e =
1

2
µ|~̇r|2 =

p2

2
. (5)

Notice the perfect equivalent-particle analogy in both cases. For central
forces, Eq. (5) can be written as:7

Ek =
1

2
µṙ2 +

`2

2µr2
.

6Each dot above a symbol indicates a time derivative. Thus, ~̈r ≡
d2~r

dt2
.

7See “Derivation of the Constants of the Motion for Central Forces” (MISN-0-58).
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Figure 4. Illustration of the CM and relative vectors.

3. Formal Derivation

3a. The Equations of Motion. For a general binary System, the six
coupled equations of motion can be put into a more tractable form by
converting to CM and relative coordinates. For two interacting objects
with position vectors and masses as denoted in Fig. 4, the CM and relative
coordinates are defined by:

~R ≡
m1~r1 +m2~r2
m1 +m2

, (6)

~r ≡ ~r1 − ~r2. (7)

The velocity of the CM is found from Eq. (6) to be:

~V ≡ ~̇R =
~p1 + ~p2

m1 +m2

.

The numerator is just the total momentum, which is conserved because
there is assumed to be no external force on the binary system. Thus the
system’s CM always traverses a straight line at constant speed, no matter
what the individual particles are doing. The latter are governed by the
individual-particle equations of motion which are straightforwardly found
to be:8

~F1 = µ~̈r; ~F2 = −µ~̈r,

where the system’s reduced mass is:

µ ≡
m1m2

m1 +m2

.

8Each overhead dot represents a time derivative: ~̈r ≡ d2~r/dt2.
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3b. Momentum, Angular Momentum, and Kinetic Energy.
The equations for various kinematical quantities can be determined in
the CM relative notation by straightforward application of the single-
particle definitions of those quantities. For example, the total momentum
is

~p tot = ~p1 + ~p2 = M~V ,

where M is the system’s total mass. Similarly one finds the total angular
momentum to be:

~Ltot = ~R× ~P + ~r × ~p ≡ ~L+ ~̀;

where:9

~p ≡ µ~̇r ≡ µ~v.

Note that ~p is the first particle’s CM momentum and the negative of the
second’s. The kinetic energy of the system is found to be:10

Etot
k =

1

2
MV 2 +

1

2
µv2 =

P 2

2M
+

p2

2µ
=

1

2
MṘ2 +

L2

2MR2
+

1

2
µṙ2 +

`2

2µr2
.

In each of the above total-system variables, there is a CM part plus a
CM-frame part. This is easily seen by noting that ~P = 0 in the CM
frame, while ~p = 0 if there are no motions in the CM frame. Interestingly,
the CM-frame terms are just those of a fictitious particle of mass µ and
position ~r with respect to the CM as origin.11

4. A Problem: Two Masses and a Spring

4a. Statement of the problem.

9For two equal mass particles, p is half the particles’ momentum difference:

~p =
1

2
(~p1 − ~p2) .

10See “Derivation of the Constants of the Motion for Central Forces” (MISN-O-58).
11Here is another interesting expression used in wave theory:

~p1 · ~r1 + ~p2 · ~r2 = ~P · ~R + ~p · ~r.

m1 m2

k

Figure 5. Two masses connected
by a spring.
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1. Consider two masses, M1 and M2, connected by a spring with spring
constant k, as shown in Fig. 5.. Write down the equations of motion
for the masses, then transform to the CM system and solve for the
frequency of the system. Finally, specialize the general solution to
these two cases:

a. M1 = M2.

b. M2 À M1, as in the case of an ordinary mass connected to the
earth by a spring (let M1/M2 → 0).

4b. Solution.
F1 = −k(x1 − x2) = m1ẍ1 (8)

F2 = −k(x2 − x1) = m2ẍ2 (9)

In the CM frame, with the CM at the origin, define: x ≡ x1 − x2. Then:

x1 =
m2

m1 +m2

x

and
x2 = −

m1

m1 +m2

x

Then Eqs. (8) and (9) become:

−kx = mrẍ (10)

kx = −mrẍ (11)

where mr ≡ m1m2/(m1+m2) is the “reduced mass.” Note that Eqs. (10)
and (11) are the same equation. It describes a spring with a mass mr on
one end and with the other end fixed (good for all mass-ratio cases), so
the solution for the frequency of oscillations is:12

ν =
1

2π

√

k

mr

a. if m1 = m2, then mr = m1/2 = m2/2, so

ν =
1

2π

√

2k

m1

b. if m2 →∞ (which fixes the #2 end), then mr → m1 and

ν =
1

2π

√

k

m1

,

a lower frequency than for m1 = m2.

12See “Simple Harmonic Motion” (MISN-0-25).
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