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Abstract:
When identical waves move in opposite directions, the resultant wave
is called a “standing wave.” Such oppositely moving waves again cause
characteristic interference maxima and minima in the resultant standing
wave. In particular, a standing wave may be produced when identical
waves move back and forth between two boundaries (without any supply
of outside energy), provided that the wavelength has certain distinct val-
ues compatible with the conditions at the boundaries Such standing waves
have many applications. For example, the specific wavelengths of stand-
ing waves produced in musical instruments determine the frequencies, and
thus the pitch, of the tones produced by these instruments. Furthermore,
standing waves play a fundamental role in the quantum-theoretical un-
derstanding of atomic properties.
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SECT.

A INTERFERENCE OF OPPOSITELY MOVING
WAVES

- Standing wave
Consider two sinusoidal waves wa and wb, each having the same

wavelength λ and the same amplitude A1, moving in opposite directions.
(For example, the waves might be transverse displacement waves traveling
along a long string.) Fig. A-1a shows these waves at several successive
times differing by T/4, where T is the period of the waves. Fig. A-1b
shows the resultant wave equal to the sum of these two waves. Such a
wave is called a “standing wave”:

Def.
Standing wave: A wave resulting from the su-
perposition of identical waves moving in opposite
directions

(A-1)

- Nodes and antinodes
The standing wave in Fig. A-1b exhibits pronounced interference

effects. For example, at points such as P1, P3, P5, or P7, the individual
waves have always equal magnitudes but opposite signs. Hence the waves
interfere there destructively so as to produce a resultant wave of zero
amplitude. (Such points, where the resultant wave is always zero, are
called “nodes” of the resultant wave.) On the other hand, at points such
as P2, P4, or P6, the individual waves have always the same magnitude
and the same sign. Hence the waves interfere there constructively to
produce a resultant wave of the maximum possible amplitude 2A1. (Such
points, where the resultant wave has the maximum possible amplitude,
are called “antinodes”.)

- Spacing between nodes
The amplitude of the standing wave exhibits the alternating inter-

ference maxima and minima shown in Fig. A-1b because the phase dif-
ference between the oppositely moving waves varies from point to point.
For example, consider in Fig.A-1 a point P ′ (such as P4) at a distance
λ/4 to the right of some other point P (such as P3). At the point P ′

the phase of the wave wa moving to the right is then one-fourth cycle
larger than at P , while the phase of the wave wb moving to the left is
one-fourth cycle smaller than at P . Hence the phase difference between
the waves at P ′ differs from their phase difference at P by one-half cycle.
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Fig.A-1: (a) Two identical waves, wa and wb, moving in
opposite directions, shown at five successive times (top to
bottom). During a time T/4, the wave wa (solid line) moves
a distance λ/4 to the right while the wave wb (dashed line)
moves a distance λ/4 to the left. (b) Resultant wave equal
to the sum of these waves.
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For example, if the waves at P are one-half cycle out of phase so as to
interfere there destructively, the waves at P ′ are in phase so as to interfere
there constructively. Thus the separation between a node and an adjacent
antinode is λ/4. (See Fig.A-1b.)

On the other hand, consider in Fig. A-1 a point P ′ (such as P5) at
a distance λ/2 to the right of some other point P (such as P3). At the
point P ′ the phase of the wave wa moving to the right is then one-half
cycle larger than at P , while the phase of the wave wb moving to the left
is one-half cycle smaller than at P . Hence the phase difference between
the waves at P ′ differs from their phase difference at P by just 1 cycle.
Correspondingly, the waves at P ′ interfere in exactly the same way as
they do at P . For example, if the waves interfere destructively at P , they
also interfere destructively at P ′; and if they interfere constructively at P ,
they also interfere constructively at P ′. Thus we arrive at this conclusion,
illustrated in Fig. A-1b:

The separation between adjacent nodes (or antinodes)
is λ/2.

(A-2)

REFLECTION AT A BOUNDARY

- Node at boundary
Waves traveling in opposite directions are commonly produced when

a wave is reflected from a boundary. Let us consider the simple situation
where a wave is incident upon a boundary which is such that the dis-
turbance at the boundary remains always zero. (For example, the wave
might be a transverse displacement wave moving along a string toward a
“fixed” end of the string, i.e., an end which does not move because it is
attached to a wall or some other very massive object. Then the end of the
string is a boundary at which the displacement of the string must always
be zero.) The incident wave arriving at the boundary then interacts with
the boundary so as to produce a “reflected” wave (i.e., a wave moving
back in the opposite direction). If the disturbance at the boundary is to
remain equal to zero, the wave resulting from the superposition of the
incident and reflected waves must then be zero at the boundary, i.e., the
resultant wave must have a node at the boundary.

- Complete reflection
For example, suppose that the point P7 in Fig. A-1a is a boundary

point where the disturbance remains always equal to zero. When the
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incident wave wa arrives at the boundary point P7, it then produces a
reflected wave wb moving back to the left. Since the resultant wave at the
boundary point must be zero, the reflected wave there must cancel the
incident wave completely. Hence the reflected wave must have the same
amplitude as the incident wave. Since the boundary point is a node of the
resultant wave, Def. (A-1) implies that the points at distances λ/2, 2(λ/2),
3(λ/2), . . . must also be nodes of the resultant wave. The antinodes are
then located halfway between these points. Hence the superposition of
the incident and reflected waves results in pronounced interference effects
in front of the boundary.

Nodes and Antinodes of Standing Waves (Cap. 1)

A-1
Oppositely moving sound waves: Two sound waves, each having
a wavelength of 80 cm, move in opposite directions. (a) What is

the separation between points where the resultant amplitude of the waves
is maximum? What is the separation between points where the resultant
amplitude of the waves is minimum? What is the separation between a
point where the resultant amplitude is maximum and the next point where
the resultant amplitude is minimum? (b) Suppose that each wave has an
amplitude described by an excess pressure (above atmospheric pressure)
of 4 × 10−4 N/m2. What then is the resultant amplitude of the waves
at points where this amplitude is maximum and at points where it is
minimum? (c) Suppose that one wave has an amplitude corresponding to
an excess pressure of 4×10−4 N/m2 and the other wave has an amplitude
corresponding to an excess pressure of 3× 10−4 N/m2. What then is the
resultant amplitude at points where this amplitude is maximum and at
points where it is minimum? (Answer: 4)

A-2
Standing electromagnetic waves: An electromagnetic wave, inci-
dent perpendicularly upon a metal plate, is completely reflected

from this plate. When a small flashlight bulb is moved slowly in front of
the plate along a line perpendicular to it, the bulb is observed to become
lit and then unlit again, the separation between successive points where
the bulb glows most brightly being 5.0 cm. (The bulb glows most intensely
when it is located at a point where the amplitude of the electric field is
largest.) What is the frequency of the electromagnetic waves incident on
the metal plate? (Answer: 6) (Suggestion: [s-2])

A-3
Standing light waves: A plane light wave, with a wavelength λ
is incident perpendicularly upon a plane metallic mirror. The
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electric field at the mirror must then be nearly zero since the field would
otherwise produce enormously large currents in the metal (because it has
a very high conductivity). Hence the light reflected from the mirror is such
that the total field produced at the mirror by the incident and reflected
waves is always nearly zero. A standing light wave can then be detected in
front of the mirror by placing there a very thin photograph film making an
angle α with the mirror, as indicated in Fig. A-2. The photographic film,
after development, should then be blackened most wherever the electric
field is largest. (a) What should be the separation between neighboring
blackened lines on the film? (b) At what distance along the film, measured
from where the film touches the mirror, is the first of these blackened lines?
(c) Why is it easier to measure the separation between blackened lines if
the angle α is small? (d) What is the numerical value of the observed
separation between blackened lines if α = 2.0◦ and if one uses yellow light
with λ = 6.0× 10−7 m? (Answer: 1) (Suggestion: [s-4])
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SECT.

B STANDING WAVES BETWEEN BOUNDARIES

An especially interesting situation arises when identical waves merely
move back and forth repeatedly without energy being supplied from any
sources. For example, such a standing wave can be produced when waves
move back and forth between two boundaries as a result of repeated re-
flections from these boundaries.

- String with fixed ends
In particular, let us discuss the simple case of transverse displace-

ment waves on a string, of length L, stretched between two fixed boundary
points. Such waves can then travel back and forth between these bound-
ary points, being repeatedly reflected at these points. (If the dissipation
of the energy of the waves into random internal energy is negligible, the
waves keep moving back and forth indefinitely.) Since the boundary points
are fixed, the resultant standing wave must then always be zero at these
boundary points, i.e., it must have nodes at these points. What then are
the wavelengths of the possible standing waves which satisfy the condition
that they have nodes at the boundary points?

- Possible wavelengths
The possible standing waves can have different numbers of nodes

and the separation between adjacent nodes is, by Rule (A-2), always equal
to λ/2. The simplest possible standing wave is then one where the two
boundary points are the only nodes, with no other nodes between them.
This is the situation illustrated in Fig. B-1a where the wavelength λ is
such that λ/2 = L, the entire length of the string between the boundary
points. The next possibility, illustrated in Fig. B-1b, is a standing wave
which has one additional node between the boundaries so that the nodes
divide the string into 2 parts. Since the distance between nodes is equal
to λ/2, the wavelength in this case is then such that 2(λ/2) = L. The
next possibility, illustrated in Fig. B-1c, is a standing wave which has 2
additional nodes between the boundaries so that the nodes divide the
string into 3 parts. Since the distance between nodes is equal to λ/2, the
wavelength in this case must then be such that 3(λ/2) = L. And so forth.

To summarize, there can be 0, 1, 2, 3, . . . nodes in addition to those
at the boundaries of the string. These nodes subdivide the string into n
parts, where n = 1, 2, 3, . . .. Since the distance between adjacent nodes
is equal to λ/2, the wavelength λ of the corresponding standing waves
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Fig. B-1: Possible standing waves on a string fixed at both
ends. Each diagram indicates the standing wave at one time
(solid line) and half a period later (dashed line). The nodes
are indicated by the letter N .

must then be such that

n

(

λ

2

)

= L, where n = 1, 2, 3, . . . (B-1)

or

λ =
2L

n
(B-2)

- Possible frequencies
The frequency ν of each wave is related to its wavelength λ

so that λν = V , the speed of the waves along the string. Hence the
various possible wavelengths specified by Eq. (B-2) are related to the
corresponding frequencies of these waves so that

ν =
V

λ
= n

(

V

2L

)

(B-3)
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- Summary
The condition that the boundary points of the string remain fixed

implies that there can only be certain possible standing waves (or “modes
of vibration” of the string) resulting from waves traveling back and forth
along the string. Each of these waves is characterized by a distinct
wavelength and corresponding frequency. The first possible standing
wave, labeled by n = 1 in Fig. B-1, is one where the string vibrates as
a whole with no nodes between its boundaries. This standing wave has
the largest possible wavelength λ1, and correspondingly smallest possible
frequency ν1, given by Eq. (B-2) and Eq. (B-3) with n = 1. Thus

λ1 = 2L, ν1 =
V

2L
(B-4)

The other standing waves, labeled by n = 2, 3, 4, . . ., have succes-
sively more nodes and thus correspondingly smaller wavelengths and
larger frequencies given by Eq. (B-2) and Eq. (B-3). Thus

λ =
λ1

n
, ν = nν1 (B-5)

The frequencies of all the possible standing waves are thus simply
integral multiples of the smallest possible frequency ν1 characterizing the
first standing wave.

APPLICATION TO MUSICAL INSTRUMENTS

- String instruments
The preceding discussion of standing waves has immediate appli-

cations to string instruments (such as violins or guitars). In such an
instrument the vibrations of a string stretched between two fixed points
are used to produce various tones. The length of the string determines the
wavelength, and thus the corresponding frequency, of any mode of vibra-
tion (i.e., standing wave) set up in the string. This frequency of vibration
of the string is then equal to the frequency of the sound waves produced
by the string in the surrounding air. In general, the string may vibrate
in a complex fashion so that its vibrations may be described as the sum
of several modes of vibration occurring simultaneously. (See Sec. C.) The
frequency of the standing wave of lowest frequency (the “fundamental”
mode of vibration) determines then the perceived pitch of the correspond-
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ing sound wave in air, while the frequencies of the standing waves of higher
frequency (the “harmonic” modes of vibration) determine the perceived
tonal quality of the sound.

- Changing pitch
In order to change the pitch of a tone, a musician places a finger

on the string so as to shorten the length L of the string which is left
free to vibrate. By Eq. (B-4), the wavelength of the fundamental mode of
vibration of the string is thus decreased and the frequency of vibration of
the string is correspondingly increased. Thus the pitch of the produced
sound is also increased. For example, suppose that the musician wants
to produce a tone which has (according to musical terminology) a pitch
an “octave” higher than another tone. Such a tone is caused by a sound
wave having a frequency twice as large as that of the other tone. To
produce this tone, the musician places his finger in the precise middle of
the string, thus shortening by half the length of the string free to vibrate.
Correspondingly the frequency of vibration of this shortened string is then
twice as large as that of the original entire string.

- Wind instruments
A wind instrument (such as a flute, trombone, or organ) produces

tones by setting up standing sound waves in a column of air within a tube.
(Such standing waves can be analyzed in a manner similar to standing
waves on a string.) The frequencies of vibrations of these standing waves
determine the pitch of the sound produced by the wind instrument. Thus
a shortened column of vibrating air produces a standing wave with a
smaller wavelength and correspondingly larger frequency, and thus pro-
duces sound of a higher pitch. (For example, a short organ pipe produces
a tone of a higher pitch than a long organ pipe.)

STANDING WAVES IN SEVERAL DIMENSIONS

Standing waves produced on a string are particularly simple since
all the waves travel parallel to a single direction. Waves traveling along
surfaces or in three-dimensional space can similarly produce more complex
standing waves in several dimensions. For example, consider a drum
consisting of a circular membrane stretched so that it is fastened around
its circumference. Then elastic displacement waves can travel back and
forth over the surface of this membrane. The resulting standing waves
on the membrane must then be such as to satisfy the condition that the
disturbance at the fixed circular boundary of the membrane is zero, i.e.,
that this boundary be a node. This condition then allows again only

14
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Fig. B-2: Some of the possible standing waves of a vibrating
circular membrane. The lines indicate the nodes. At any
instant, the displacement of a shaded region is opposite to
that of an unshaded region.

certain possible standing waves corresponding to different numbers and
kinds of nodal lines along which the resultant wave remains zero. Fig. B-2
illustrates a few of these possible standing waves (or modes of vibration)
of such a membrane.

Standing Waves between Boundaries (Cap. 2)

B-1
Standing electromagnetic waves between parallel metal plates:
Standing eletromagnetic waves are set up between two parallel

metal plates separated by a distance of 30 cm. The resultant electric
field must then be nearly zero at each of these plates (since the current
produced in each of these highly conducting plates would otherwise be gi-
gantically large). (a) What then are the wavelengths of the four standing
waves with the longest possible wavelengths? (b) What are the corre-
sponding frequencies of these standing waves (assuming that the space
between the plates is a vacuum)? (Answer: 5)

(a)

(b)

(c)

lower

end

upper

end

finger board

L

Fig. B-3.

(a) (b)

L

Fig. B-4.
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B-2
Producing tones on a violin: The “A-string” of a violin, when
properly stretched between its two fixed ends separated by a dis-

tance L, vibrates so that its “fundamental frequency” (i.e., the frequency
of the standing wave of lowest possible frequency) is ν = 440Hz and thus
produces the tone with the pitch of “standard A.” (See Fig. B-3a.) To
produce a tone of higher pitch, the violinist places a finger at an ap-
propriate place on the string. If the finger there is pressed against the
“fingerboard” (as shown in Fig. B-3b), only the upper part of the string
(between the finger and the upper end of the string) then vibrates when
the string is bowed near its upper end. (a) The tone of A that has, in
musical language, a pitch an “octave” above the original A, has a funda-
mental frequency 2 times as large as ν. At what distance from the lower
end of the string must the violinist place his finger so as to produce this
tone? Express your answer in terms of L. (b) The tone of “E,” which has
a pitch a “fifth” above that of the original A, has a frequency (3/2)ν. At
what distance from the lower end of the string must the violinist place
his finger to produce this tone? (Answer: 3) (Suggestion: [s-1])

B-3
Producing “harmonic” tones: A violinist may also touch a string
only lightly with his finger (as shown in Fig. B-3c), without press-

ing the string to the fingerboard. Then the string still vibrates as a whole,
but must have a node at the position of the finger. (Since modes of vi-
bration without a node at this position are suppressed, the tone thus
produced has an ethereal quality and is called a “harmonic” tone by vio-
linists.) The perceived pitch of this tone corresponds then to the funda-
mental frequency (i.e., the lowest possible frequency) of the standing wave
with a node at the position of the finger. (a) Suppose that the violinist
touches his finger only lightly at the same position as that described in
part a of problem B-2. What then is the fundamental frequency of the
resulting tone? Express your answer in terms of the original frequency
ν of the undisturbed string and also in terms of the frequency νa = 2ν
produced when the finger is pressed to the fingerboard. (b) Suppose that
the violinist touches his finger only lightly at the same position as that
described in part (b) of problem B-2. What then is the fundamental fre-
quency of the resulting tone? Express your answer in terms of the original
frequency ν of the undisturbed string and also in terms of the frequency
νb = (3/2)ν produced when the finger is pressed to the fingerboard. (An-
swer: 8) (Suggestion: [s-5])

B-4
Closed and open organ pipes: Tones are produced in an organ by
blowing into the bottom of pipes and thus setting up standing

sound waves of the air in the pipes. (a) One type of organ pipe is closed
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at both ends, as shown in Fig. B-4a The net displacement of the air must
then be zero (i.e., the resultant standing sound wave must have nodes) at
each end of the pipe. If the length of the organ pipe is L, what are the
wavelengths of the standing sound waves with the longest three possible
wavelengths? If the speed of sound in air is V , what are the corresponding
frequencies of the sound produced by these three standing waves? (b)
Another type of organ pipe is closed at one end and open at its other
end, as shown in Fig. B-4b. The net displacement of the vibrating air
must then be zero at the closed end of the pipe and is approximately
maximum at the open end of the pipe (i.e., the resulting standing wave
has a node at the closed end and an antinode at its open end). If the
length of the pipe is L, what are then the wavelengths of the standing
sound waves with the longest three possible wavelengths? What are the
corresponding frequencies of the sound produced by these three standing
waves? (Answer: 2) (Suggestion: [s-3])

B-5
Pitch produced by an organ pipe: The pitch of the sound produced
by an organ pipe corresponds to the fundamental frequency (i.e.,

the lowest possible frequency) of the standing sound wave produced in the
pipe. (a) The speed of sound in air is 340m/s. What then must be the
length of an organ pipe, closed at both ends, which produces the pitch of
A corresponding to the frequency of 440Hz? (b) What must be the length
of an organ pipe, closed at one end and open at the other, which produces
this same pitch? (c) To produce tones of higher pitch, should organ pipes
be longer or shorter? (d) The speed of sound in air increases slightly with
increasing temperature. As a result, does the pitch of the tone produced
by an organ pipe of given length increase or decrease? (Answer: 10)

More practice for this Capability: [p-1], [p-2], [p-3]
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SECT.

C ANALYSIS OF COMPLEX WAVES

Our discussion throughout the preceding units has dealt almost en-
tirely with sinusoidal waves. How can this discussion be extended to deal
with more complex waves which are not simply sinusoidal?

- Fourier analysis
The answer to this question is provided by the following mathemat-

ical result, first proved by the French mathematician and physicist J.B.J.
Fourier (1768-1830):

Any disturbance can always be expressed as a sum of
sinusoidal disturbances of all possible frequencies, with
appropriately chosen amplitudes and phases.

(C-1)

This result is extremely useful because it permits one to express any
wave, no matter how complex, as a sum of simple sinusoidal waves of
various frequencies. By this procedure, called “Fourier analysis,” it is
possible to discuss any complex wave phenomenon by using merely a
knowledge of the behavior of simple sinusoidal waves.*

* The result that any disturbance can be expressed as a sum
of component sinusoidal disturbances of various frequencies
is analogous to the familiar result that any vector can be
expressed as a sum of component vectors along various direc-
tions.

- Plausibility argument
Let us indicate why the remarkable result in Rule (C-1) is plausible

(although a mathematical proof is beyond the scope of this book). Con-
sider at some fixed point any disturbance (or wave) w which varies in the
course of time in any manner, as indicated in Fig. C-1a. We shall now try
to express this disturbance as a sum of simpler disturbances:

(1) The disturbance w in Fig. C-1a can be expressed as a sum of
successive “pulses” (i.e., disturbances of very short duration), where each
pulse at any time has a value equal to that of the original disturbance w
at this time. (See Fig. C-1b.)

(2) Consider then any such pulse occurring at some time t0, as in-
dicated in Fig. C-1c. Suppose that we take very many sinusoidal distur-
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(a) (c)

(b) (d)

t t

t t

t t

t t

w

t0

Fig. C-1: A disturbance expressed as a sum of sinusoidal
disturbances. (a) A disturbance at a fixed point varying
with the time t. (b) This disturbance expressed as a sum
of many pulses such as those indicated. (c) A single one of
these pulses. (d) This pulse expressed as a sum of many
sinusoidal disturbances such as those indicated.

bances, of all possible frequencies, with phases chosen so that each of
these disturbances has its maximum value at the time t0. (See Fig. C-1d.)
Then all these sinusoidal disturbances have the same sign at the time t0 so
that their sum there is large. (In other words, the disturbances interfere
constructively at this time.) But since the disturbances have different fre-
quencies, some of these disturbances are positive and others are negative
at any time different from t0. Hence the sum of many such disturbances
is, at any time different from t0, negligibly small compared to their sum
at t0. (In other words, the disturbances interfere destructively at all times
other than t0.) Thus the sum of all these sinusoidal disturbances approxi-
mates a pulse which is appreciable only at the time t0 and negligible at all
other times. If the amplitudes of the sinusoidal disturbances in Fig. C-1d
are appropriately chosen, their sum can then be made to approximate the
pulse in Fig. C-1c.

According to the preceding comments, any disturbance can be ex-
pressed as a sum of successive pulses; in turn, any such pulse can then
be expressed as a sum of sinusoidal waves of all possible frequencies. The
combination of these arguments leads thus to the result, in Rule (C-1),
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that any disturbance can be expressed as a sum of sinusoidal waves of all
possible frequencies.

APPLICATIONS

- Musical tones
The sound wave produced by a vibrating tuning fork consists pre-

dominantly of a wave of a single frequency. But the sounds produced
by the human voice or by musical instruments (such as violins, guitars,
pianos, bells,. . .) are caused by complex vibrations of strings or other ob-
jects. Hence these sounds are due to complex sound waves which can,
according to Rule (C-1), be analyzed into a sum of sinusoidal waves of
many different frequencies. For example, the tone corresponding to the
note of “A” produced by a violin A-string seems different from the same
tone of “A” produced by an oboe. When the sound waves corresponding
to each of these notes are analyzed into sums of component sinusoidal
waves, the component wave of lowest frequency has in each case the same
frequency of 440 hertz. This is the reason why the tones from both in-
struments are perceived to have the same pitch. But since the amplitudes
of the component sound waves of higher frequencies are different for the
two instruments, the quality of the tones produced by these instruments
is perceived to be different.

- Audio amplifiers
An audio amplifier used for the electronic recording or playing of

music is often specified by its “frequency response.” For example, an am-
plifier is said to have a frequency response from 25Hz to 18,000Hz if it
amplifies equally all sinusoidal disturbances having frequencies between
these values. If such an amplifier is used to amplify any tone, no matter
how complex, it then amplifies equally its component sound waves for all
frequencies audible to the human ear. Hence such an amplifier is called
a “high-fidelity” amplifier. By contrast, an amplifier used in a dictat-
ing machine might have a much more limited frequency response from
100Hz to 6000Hz. Such an amplifier then amplifies equally sounds with
frequencies in this range, but not outside this range. Since some of the
sinusoidal waves of frequencies audible to the human ear are not amplified
by the amplifier, the tone quality of sound emerging from the amplifier is
distorted compared to the tone quality of the original unamplified sound.
Such a distortion may be quite acceptable for an adequate understand-
ing of human speech, but would be objectionable for the playing of good
music.
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- Radios
Since many radio stations broadcast electromagnetic waves simul-

taneously, the total electric field produced by all these waves at any point
varies with time in a complex way. But a radio placed at such a point can
be tuned so as to amplify only a specified sinusoidal component of this
electric field. Thus the radio can be used to select only that component
of the electric field having the frequency of the electromagnetic wave sent
out by a particular station.

- Complex standing waves
The result, Rule (C-1), applies equally well to standing waves. For

example, after a guitar string has been plucked, the string vibrates in
quite a complex way. But this complex vibration can be expressed as a
sum of all the possible sinusoidal standing waves, of different frequencies,
which can be set up on such a string (i.e., as a sum of standing waves,
such as those illustrated in Fig. B-1, each with an appropriately chosen
amplitude and phase).
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SECT.

D SUMMARY

DEFINITIONS

Standing wave; Def. (A-1)

IMPORTANT RESULTS

Interference of identical oppositely moving waves: Rule (A-2)

Nodes (or antinodes) are separated by λ/2

Standing waves on a string with fixed boundaries: Eq. (B-1), Eq. (B-2),
Eq. (B-3)

λ such that n(λ/2) = L, where n = 1, 2, 3, . . . Hence λ = (2L)/n and
ν = V/λ = n(V/2L)

Fourier analysis: Rule (C-1)

Any disturbance can be expressed as a sum of sinusoidal disturbances
of all possible frequencies.

NEW CAPABILITIES

(1) For two waves of the same frequency traveling in opposite directions,
(a) relate the positions of the interference maxima and minima to
the wavelength or frequency; (b) relate the resultant amplitudes of
these maxima or minima to the amplitudes of the individual waves.
(Sec. A)

(2) For waves traveling between two boundaries, relate the specified con-
ditions at these boundaries to the possible wavelengths or frequencies
of the resulting standing waves. (Sec. B; [p-1], [p-2], [p-3])

D-1
Standing-wave measurement of sound speed in a gas (Cap. 2):
The speed of sound in a gas can be measured by using a horizon-

tal tube containing the gas and a small amount of powder spread over the
bottom surface of the tube. One of the closed ends of this tube consists
of the diaphragm of a loudspeaker producing sound waves of a fixed fre-
quency ν. The other end of the tube consists of a movable piston which
can be adjusted in position until a standing sound wave is produced in the
tube. The existence of such a standing wave can be detected by observing
that the powder in the tube then piles up in small ridges at those places
where there is a node of the displacement of the gas so that the powder
there remains undisturbed. (See Fig.D-1.) The distance d between two
such neighboring ridges (i.e., between two nodes of the standing wave)
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piston

d

loudspeaker

gas

Fig.D-1.

can then be measured with a ruler. Express the speed V of sound in the
gas inside the tube in terms of the frequency ν of the loudspeaker and the
measured distance d. (Answer: 7)
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SECT.

E PROBLEMS

E-1
Standing waves produced by varying the tension in a string:
Transverse standing waves in a string can be easily demonstrated

by attaching one end of the string to a tuning fork vibrating at some
fixed frequency ν and by attaching the other end of the string to a peg
(or similar device) which allows one to vary the tension in the string. Sup-
pose that the string vibrates so that the observed standing wave has only
one loop (i.e., no nodes except at the ends of the string). If one wants
to demonstrate standing waves with more loops (i.e., with more nodes),
should the tension of the string be increased or decreased? (Answer: 12)
(Suggestion: [s-8])

E-2
Relation between pitch and properties of a string: In text problem
(H-1) of Unit 430 you showed, by arguments of unit consistency,

that the speed V of transverse waves along a string is proportional to
(Ft/m

′)1/2 where Ft is the magnitude of the tension force acting on the
string and m′ is the mass per unit length of the string. (a) If the mag-
nitude of the tension force on a string is increased, does the pitch of the
tone produced by the string increase or decrease? b) In string instruments
(such as the violin or the piano) certain strings are covered by a winding
of metal wire. Is this done to increase or decrease the pitch of the tone
produced by such a string when it is subjected to a given tension force?
(c) If the original magnitude of the tension force on a string is Ft, what
must be the magnitude of the tension force required so that frequency of
the sound produced by the string is 3/2 larger than the original frequency
(i.e., so that the new pitch is one “fifth” higher than the original pitch)?
(Answer: 9)

E-3
Resonance and speed of sound: A particular standing wave is
usually set up in a system whenever the system is excited by an

outside source at a frequency equal to that of this particular standing
wave. (This phenomenon is called “resonance”.) For example, Figure E-1
illustrates a tuning fork vibrating at a frequency of 1056Hz, placed above
an open vertical tube filled with water. If water is gradually removed so
as to lower the water level in the tube, resonance can then be detected
at various heights of the water level because the corresponding standing
sound waves (set up in the column of air between the water surface and
the open top end of the tube) lead to a sound louder than that produced
by the tuning fork alone. Suppose that the first such resonance occurs
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tuning fork

Fig. E-1.

when the water level is 7.90 cm below the open end of the tube. What then
is the speed of sound in the air of the tube? (Answer: 14) (Suggestion:
[s-6])

E-4
Resonances in an air column: Suppose that the speed of sound
in air is 330m/s and that the tuning fork placed above the water-

filled tube of Fig. E-1 vibrates at a frequency of 660Hz (thus producing
the tone of E). At what possible distances of the water level below the
open top end of the tube does one then detect resonance if the length of
the tube is 1meter? (Answer: 16)

E-5
Ordinary and “harmonic” tones produced by a string: An unfin-
gered violin string, of length L0, produces a tone corresponding

to a sound frequency ν0. (a) What then is the frequency ν of the ordinary
sound produced when the string is pressed against the fingerboard at dis-
tance L0/n from its lower end (where n is some integer such as 1,2,3,. . .)?
(b) What is the frequency ν ′ of the “harmonic” sound produced when the
finger is touched lightly at the same point of the string? Express your
answer in terms of the frequency ν0 of the unfingered string and also in
terms of the frequency ν of the ordinary sound introduced by the finger
placed at this position. (Answer: 13) (Suggestion: [s-9])
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PRACTICE PROBLEMS

p-1 STANDING WAVES BETWEEN BOUNDARIES (CAP. 2): Tone

production on a violin string A violin D string, having a length of 33 cm,
sounds the tone of D (corresponding to a frequency of 293.3Hz) when it
is played without fingering. At what distance from the lower end of the
string must one place a finger so as to produce the tone of F having a
frequency of 352Hz? (Answer: 53) (Suggestion: Review text problem B-2
and see Fig. B-3 for the definition of “lower end of string.”)

p-2 STANDING WAVES BETWEEN BOUNDARIES (CAP. 2): Speed

of waves on a guitar string The B string of a guitar has a length of 60 cm
and produces the tone of B having a frequency of 247Hz. What then is
the speed of transverse waves traveling along this string? (Answer: 57)
(Suggestion: See [s-7].)

p-3 STANDING WAVES BETWEEN BOUNDARIES

(CAP. 2): String instruments and musical intervals A string of a
string instrument (such as a violin or guitar) has a length L and produces
a tone corresponding to a frequency ν. In musical language, the tone
with a pitch a “fifth” higher has then a frequency (3/2)ν; the tone with
a pitch a “fourth” higher has a frequency (4/3)ν; and the tone with a
pitch a “major third” higher has a frequency (5/4)ν. At what distance
from the lower end of the string must one place a finger to produce each
of these three tones? Express your answer in terms of L. (Answer: 56)
(Suggestion: Review text problem B-2.)
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SUGGESTIONS

s-1 (Text problem B-2): Suppose that the string, of length L, vibrates
with a fundamental frequency corresponding to the standing wave of low-
est possible frequency (or longest possible wavelength). Suppose that the
string is now shortened so that its new length is L′, while the tension
of the string (and thus the speed of waves along the string) remains un-
changed. What then is the fundamental frequency ν ′ of this shortened
string? (Answer: 54)

s-2 (Text problem A-2): In front of the plate there is a standing wave
resulting from the incident wave and the reflected wave traveling back in
the opposite direction. What is the separation between successive antin-
odes of the electric field in this standing wave? What then is the wave-
length of the electromagnetic waves? What then is the frequency of these
waves, since the speed of electromagnetic waves in vacuum (or air) is
3× 108 m/s?

s-3 (Text problem B-4): Sound waves travel back and forth in the air in-
side each pipe. Sketch the resulting possible standing displacement waves
which can exist at any instant so as to satisfy the specified conditions
at the ends of the pipe. Remember that the spacing between successive
nodes is λ/2, and that the spacing between a node and a neighboring
antinode is λ/4. (a) If the pipe is closed at both ends, what is the wave-
length of the standing wave which has no nodes except at both ends of
the pipe? (b) If the pipe is closed at one end and open at the other end,
what is the wavelength of the standing wave which has no nodes, except
a node at the closed end and an antinode at the open end? (Answer: 55)

s-4 (Text problem A-3): The resultant electric field has a node at the
plane mirror. (a) What then is the distance between the mirror and the
next parallel plane where the resultant field has an antinode (i.e., where
the amplitude of this field is largest and thus produces maximum black-
ening of the film)? (b) What then is the distance between this plane,
corresponding to an antinode,and the next plane corresponding to an
antinode? (c) The film is blackened wherever it intersects a plane cor-
responding to an antinode of the resultant electric field. If two such
neighboring planes are separated by distance L, and the film makes an
angle α with any such plane, what is the distance along the film between
the lines where the film intersects these planes? Draw a diagram and use
simple trigonometry. (Answer: 52)
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s-5 (Text problem B-3): Sketch the possible modes of vibration of the
entire string,of length L,and pick out the first possible mode where there
is a node at the position of the finger. What then is the wavelength of this
standing wave, expressed in terms of L? What then is the corresponding
frequency of vibration of the string?

s-6 (Text problem E-3): Review the discussion of open organ pipes in
problem B-4.

s-7 (Practice problem [p-2]): If the frequency of the sound waves pro-
duced by the string is 247Hz, what is the frequency of vibration of the
standing transverse wave of lowest frequency produced on this string?
What is the wavelength of this standing wave if the length of the string is
60 cm? What then is the speed of the waves traveling along the string?

s-8 (Text problem E-1): (a) If one wants to observe more nodes, should
the wavelength of waves traveling along the string be larger or smaller?
(b) Since the frequency of vibration remains unchanged, should the speed
of transverse waves along the string then be made larger or smaller? (c)
Is this achieved by making the tension in the string larger or smaller?
(Answer: 51)

s-9 (Text problem E-5): Review text problems B-2 and B-3.
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ANSWERS TO PROBLEMS

1. a.
λ

2
/ sinα

b.
λ

4
/ sinα

c. The separation is then larger.

d. 8.6× 10−6 m

2. a. 2L, L, (2/3)L; (V/2L), 2(V/2L), 3(V/2L)

b. 4L, (4/3)L, (4/5)L; (V/4L), 3(V/4L), 5(V/4L)

3. a. L/2

b. L/3 from the lower end (answer is NOT 2L/3)

4. a. 40 cm, 40 cm, 20 cm

b. 8× 10−4 N/m2, 0

c. 7× 10−4 N/m2, 1× 10−4 N/m2

5. a. 60 cm, 30 cm, 20 cm, 15 cm

b. 5.0× 108 Hz, 1.0× 109 Hz, 1.5× 109 Hz, 2.0× 109 Hz

6. 3× 109 Hz

7. V = 2νd

8. a. 2ν = νa

b. 3ν = 2νb

9. a. increase

b. decrease

c. 2.25 Ft

10. a. 0.39m

b. 0.19m

c. shorter

d. increase

11. (not used)

12. decreased

13. a. ν =
n

n− 1
ν0
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b. ν′ = nν0 = (n− 1)ν

14. 334m/s

15. (not used)

16. 12.5 cm, 37.5 cm, 62.5 cm, 87.5cm

17. (not used)

51. a. smaller

b. smaller

c. smaller

52. a. λ/4

b. λ/2

c. L/ sinα

53. 5.5 cm

54. ν′ = ν(L/L′)

55. a. 2L

b. 4L

56. L/3, L/4, L/5

57. 296m/s

58. (not used)

31

MISN-0-433 me-1

MODEL EXAM

GIVEN INFORMATION: speed of sound in air = 340meter/second

1. Speed of sound in methane gas. A tube into which methane gas
is slowly flowing has a number of closely-spaced holes along its upper
surface. The gas flowing from these holes is lighted. When sound waves
pass in opposite directions along the interior of the tube, a standing
wave is set up. At the pressure antinodes of the standing wave, the
flames above the tube are larger than at other points.

a. If the traveling waves have a frequency of 1350 hertz, the large
flames are separated by 0.16meter. What is the speed of sound
in methane?

b. What is a pressure antinode?

2. Amplitude in a standing wave. A radio wave is perpendicularly
incident on a wall which reflects it. The amplitude of the reflected wave
is 50 percent of the amplitude of the incident wave. The result can
be expressed as a standing wave plus a one-direction traveling wave.
Express the amplitude of the maxima of the standing wave part as a
number times the amplitude Ex of the incident wave. Then determine
the maximum total displacement at one of the maxima of the standing
wave, expressed as a number times the amplitude Ex of the incident
wave.

3. Lowest frequency in a closed organ pipe. At a closed end
of a pipe, there will be a displacement node for sound waves travel-
ing through the pipe. At an open end, there will be a displacement
antinode (corresponding to a pressure node there). What is the lowest
frequency at which a standing wave can be produced in an organ pipe
0.75meter long, closed at one end and open at the other?
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Brief Answers:

1. a. 432meter/second

b. A pressure antinode is a point at which the pressure variation (and
the wave) has its maximum possible amplitude.

2. E = 1.0Ex, 1.5Ex

3. 113 hertz
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