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Abstract:
Now that we have discussed fluids at rest, we can turn our attention to
situations where fluids are in motion, e.g., to situations where water flows
through pipes or blood flows through arteries.
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SECT.

A FLUID CURRENT

DEFINITION OF CURRENT

Consider a fluid which is moving, e.g., water flowing through a pipe.
Then fluid passes from one region to another through the surface separat-
ing these regions. (See Fig. A-1.) To distinguish between the two regions,
let us label one side of the surface by an arrow pointing into one of the two
regions. Suppose that, during some small enough time interval dt, a small
amount of fluid of mass m passes through this surface. If the fluid flows
into the region labeled by the arrow, the resulting change in the mass of
the fluid in this region is dM = +m. If the fluid flows out of the region
designated by the arrow, the resulting change in the mass of the fluid in
this region is dM = −m. The rate at which the fluid passes through the
surface toward the side labeled by the arrow can then be described by the
“mass flow rate” or “mass current” I defined as follows:

Def.
Mass current: I =

dM

dt
(A-1)

Thus the magnitude |I| = |dM/dt| of the mass current describes the mass
of the fluid passing through the surface per unit time. The sign of the cur-
rent into the region labeled by the arrow is positive if fluid flows through
the surface into this region, but is negative if fluid flows out of this region
(i.e., if fluid flows opposite to the direction of the arrow).

By its definition, Def. (A-1), the current is a number. The “flow
direction” of the current does not specify the direction of a vector, but
specifies merely whether the current is flowing into one or the other of
the two regions separated by the surface.

Sometimes it is convenient to define the “volume current” I ′ = dV/dt
which describes the volume of fluid passing through a surface per unit
time. Since the mass of the fluid is related to its volume by its density ρ,
dM = ρdV so that I = ρI ′. (However, it is usually easier to consider the
mass of the fluid rather than its volume, since a given number of molecules
of fluid always corresponds to a fixed mass of fluid, but corresponds to a
fixed volume only if the fluid is incompressible.)
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Fig.A-1: Passage of a fluid through a
surface separating two regions.

RELATION BETWEEN CURRENT AND FLOW VELOCITY

The flow velocity of a fluid at a point is the average velocity of the
particles of the fluid at this point. Suppose that all the particles of the
fluid move through a flat surface of area A with the same average velocity
~v perpendicular to this surface. What then is the mass current I flowing
through this surface?

During a small time interval dt, every particle of the fluid moves
then through a distance vdt in the direction of the velocity perpendicular
to the surface. Hence any particle in the fluid, which is at a distance less
than vdt behind the surface, moves through this surface; but any particle,
which is at a distance greater than vdt behind the surface, does not reach
the surface and thus does not pass through it. (See Fig.A-2.) Hence
the particles which pass through the surface in the time interval dt are
all those contained in a length vdt behind the surface of area A, i.e., all
those contained in the cylinder of length vdt and area A. The volume of
this cylinder is A(vdt). The mass dM of fluid contained in this cylinder
(i.e., the mass of fluid passing through the surface in the time dt) is then
obtained by multiplying the density ρ of the fluid by the volume of this
cylinder. In other words, dM = ρ(Avdt). The mass current I = dM/dt
passing through this surface is then equal to I = (ρAvdt)/dt or

I = ρAv (A-2)

The flow direction of the current is, of course, into the region toward
which the fluid particles move through the surface as a result of their

v
`

v dt

v dt

area A

Fig.A-2: Displacement of fluid parti-
cles moving during a time dt with a
velocity ~v perpendicular to a flat sur-
face of area A.
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velocity.

The result Eq. (A-2) is very reasonable since it states that the mag-
nitude of the mass current I through a surface is larger if the area A of
this surface is larger and if the speed v of the moving fluid is larger.

Example A-1: Speed of blood flow in the human aorta

About 5 liter of blood, having a mass of about 5 kg, is pumped from
the human heart through the aorta every minute. This means that the
average mass current I of blood passing through a cross-sectional area of
the aorta is

I = 5kg/60 s = 8× 10−2 kg/s .∗

* This is the average value of the current, since the magnitude
of the current fluctuates during the heart cycle.

The radius r of the interior of the aorta is about 1 cm and the density of
blood is approximately 103 kg/m3. What then is the average speed v of
blood passing through the aorta?

The cross-sectional area A of the aorta is:

A = πr2 = 3(1 cm3) = 3(10−2m)2 = 3× 10−4m2 .

Hence we can solve the relation (A-2) for the speed v of the blood in the
aorta. Thus we find

v =
I

ρA
=

8× 10−2 kg/s

(103 kg/m3)(3× 10−4m2)
= 0.3m/s

Understanding the Definition of Mass Current (Cap. 1a)

A-1
Example: When the left ventricle of the heart expels blood into
the aorta, about 80 gram = 8 × 10−2 kg of blood passes through

the aortic valve into the aorta during the small enough time of 0.2 second.
What is the corresponding mass current of blood through the aortic valve
into the aorta? This value is the maximum current Imax of blood passing
through the aorta. (Answer: 105)

A-2
Meaning of dM : Consider a water-filled region between two imag-
inary surfaces 1 and 2 which cut across the interior of a pipe car-

rying steadily-flowing water (Fig. A-3). During a small enough time of
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1 2 Fig.A-3.

2 second, 4 kg of water flows through surface 1 into this region, and 4 kg
of water flows through surface 2 out of this region. (a) During this time,
what are the changes in the mass of water contained in this region due to
water flowing through surface 1, through surface 2, and through both sur-
faces? (b) What are the mass currents of water into this region through
surface 1, through surface 2, and through both surfaces? (Answer: 108)
(Suggestion: [s-4])

A-3
Relating quantities: A typical gas pump delivers gasoline through
the hose nozzle with a constant mass current of 0.20 kg/s. (a)

What is the mass of the gasoline passing through the nozzle in 1.0minute?
(b) A typical automobile gas tank can hold about 60 kg of gasoline. What
is the time required for this mass of gasoline to pass through the nozzle?
(Answer: 101)

Many problems in this unit concern blood circulation and water flow.
Unless stated otherwise, use the value 1.0×103 kg/m3 for the densities
of both blood and water.

Knowing About the Relation between Mass and Volume
Currents

A-4
(a) What is the average volume current I ′ of blood in the aorta?
Use the average mass current I = 8 × 10−2 kg/s found in text

example A-1, and express your answer in terms of cm3/s. (b) When a
person inhales, the volume current of air into the lungs is about 5.0 ×
10−4m3/s. What is the mass current of air into the person’s lungs? The
density of the air is 1.2 kg/m3. (Answer: 104)

Understanding the Relation I = ρAv (Cap. 1b)

A-5
Example: The radius of a capillary is about 4 × 10−6meter
(4micron), and the average speed of the blood in a capillary is

about 0.4mm/s = 4 × 10−4m/s. (a) What is the area of the circular
cross-section of a capillary? What is the magnitude of the mass current
of blood in a capillary (i.e., through a cross-section of a capillary)? (b)
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Review: Assume that this mass current is roughly constant. What is the
time required for 1 cm3 of blood having a mass of 1 gram = 1 × 10−3 kg
to pass through a cross-section of a capillary? (Answer: 110)

A-6
Relating quantities: The average mass current of blood in the
vena cava (the large vein leading into the heart) is 8.0×10−2 kg/s,

or about equal to that in the aorta. The radius of the inside of the vena
cava is 1.2 cm, or about 20 percent larger than that of the aorta. What
is the average speed of the blood in the vena cava? Is this speed larger
or smaller than the average speed of 0.3m/s of the blood in the aorta?
(Answer: 102)

A-7
Dependence: The mass current of oil in a certain pipeline #1
is 50 kg/s. Determine the mass current of oil in each of these

pipelines: (a) A pipeline having the same cross-sectional area as pipeline
#1, but which carries oil having twice the average speed of the oil in
pipeline #1. (b) A pipeline having twice the cross-sectional area of
pipeline #1, but which carries oil having the same average speed as the
oil in pipeline #1. (c) A pipeline having half the cross-sectional area of
pipeline #1, but which carries oil having twice the average speed of the
oil in pipeline #1. (Answer: 107) (Practice: [p-1])
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SECT.

B STEADY-STATE FLOW

Consider the flow of water in a garden hose. When the water is
first turned on, the situation is quite complicated as the water gradually
fills the hose and then emerges from it. But after a while, a much
simpler situation is reached where the amount of water in any part of
the hose remains unchanged and the current of water flowing through
any cross-sectional area of the pipe remains unchanged. Such a simple
situation is called a “steady state” according to this definition:

Def.
Steady state: A situation where the macroscopic
properties of all parts of a system remain un-
changed.

(B-1)

Suppose that a moving fluid is in a steady state. Then the mass of
fluid contained in any region remains unchanged. Hence the mass of fluid
entering this region during any small time dt must be equal to the mass
of fluid leaving the region during this time. *

* In a steady state, the number of fluid particles in in any re-
gion remains unchanged. Hence the number of such particles
entering the region must be equal to the number of such par-
ticles leaving this region. But since this number of particles
has an unchanging mass, the mass of fluid entering the region
must correspondingly be equal to the mass of fluid leaving the
region.

Correspondingly, the current Iin flowing into this region must be equal
to the current Iout flowing out of the region. Thus we arrive at this
conclusion, applicable to any region:

Steady state condition: Iin = Iout (B-2)

Current may, of course, pass through several portions of the surface en-
closing the region of interest. Then Iin is the sum of all the currents
flowing into the region through several portions of the surface and Iout is
the sum of the currents flowing out of the region through several other
portions of the surface.

As an example, consider a fluid flowing through a tube whose
cross-sectional surfaces (perpendicular to the tube) may have different

11
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area A1

area A2

I1 I2
Fig. B-1: Flow of a fluid in a tube of
varying cross-sectional area.

areas A1 and A2 at two different places. (See Fig. B-1.) In a steady state
the current I1 flowing through the first surface into the region between
the two surfaces must then be equal to the current I2 flowing through
the second surface out of this region. Thus

I1 = I2 (B-3)

Suppose that the fluid at the first surface of area A1 has a density ρ1 and
a flow velocity ~v1 (perpendicular to this surface and the same at all of its
points). Similarly, suppose that the fluid at the second surface of area
A2 has a density ρ2 and a flow velocity ~v2. Then we can use the relation
(A-2) to express the steady-state condition, Rule (B-2), in the form

ρ1A1v1 = ρ2A2v2 (B-4)

In the special case where the fluid is an incompressible liquid, ρ1 = ρ2

and Eq. (B-4) becomes simply A1v1 = A2v2. This means that the product
Av of the cross-sectional area A multiplied by the speed v of the liquid
is everywhere the same. In particular, if the cross-sectional area of the
tube is everywhere the same, the speed of the fluid in the tube must be
everywhere the same. On the other hand, if the cross-sectional area A of
the tube is smaller at some place, then the speed v of the liquid in the
tube must there be correspondingly larger (thus assuring that the same
amount of fluid passes through the smaller area).

For example, when water emerges from a narrow nozzle at the end of
a garden hose, the speed of the water emerging through the nozzle is
much larger than the speed of the water inside the hose of larger cross-
sectional area. As another familiar example, the speed of water flowing
in a mountain river is larger where the cross-sectional area of the river
channel is smaller (e.g., in a narrow channel between rocks or at places
where the river is shallow).

Consider a junction between a tube 1 and two other tubes 2 and
3. (See Fig. B-2.) In a steady-state the mass of fluid in the junction

12
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I1

I2

I3

Fig. B-2: Flow of fluid through a junction con-
necting several tubes.

region (indicated shaded in Fig. B-2) must remain unchanged. Hence
the current I1 flowing into this region from tube 1 must be equal to the
current flowing out of this region, i.e., to the sum of the currents I1

and I2 flowing out of this region through the tubes 2 and 3. Thus the
steady-state condition, Rule (B-2), implies simply that

I1 = I2 + I3 (B-5)

Example B-1: Speed of blood flowing in capillaries

The main artery (aorta) finally branches out into a large number
N of narrow capillaries (where N ≈ 109). Suppose that Ic is the mass
current of blood in each capillary. In the steady state the mass current
Ia flowing into the capillaries from the aorta must then be equal to the
mass current NIc flowing out of all the N capillaries. Hence

Ia = NIc

or

Ic =
Ia
N
≈ 10−9 Ia

Thus the current of blood in a capillary is very much smaller than that
in the aorta.

We know from Example A-1 that the mass current of blood in the
aorta is Ia = 8 × 10−2 kg/s. Hence the mass current of blood in a capil-
lary is about Ic = 8 × 10−11 kg/s. But by Eq. (A-2), Ic = ρAcvc where
ρ = 103 kg/m3 is the density of blood, Ac is the cross-sectional area of
a capillary, and vc is the speed of blood in a capillary. Since the in-
ner diameter dc of a capillary is dc ≈ 10−5m, its cross-sectional area
is Ac = π(dc/2)

2 = 8 × 10−11m2. Hence we can use this informa-
tion to find the speed vc of blood flowing in a capillary. Thus we find
vc = Ic/(ρAc) ≈ 10−3m/s or 1millimeter/second. This is much smaller
than the speed va = 0.3m/s of blood of in the aorta as found in Example
A-1).
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IC

IL

IV IA

IB

lung system

coronary system

aortavena

cava

region 2 region 1

bronchial system

Fig. B-3.

Understanding the Steady State Condition (Cap. 1c)

In blood circulation, there is no net accumulation of blood in any part
of the circulatory system over long time periods (i.e., over many heart
cycles). Thus we can apply the steady state condition to relate average
currents in blood vessels.

B-1
Statement: Figure B-3 shows schematically the arrangement of
the blood circulation channels near the human heart. Each chan-

nel is labeled with a symbol for the magnitude of the average current in
the channel, and the arrows indicate the direction of blood flow in each
channel. (The globular regions represent capillary networks or “beds.”)
(a) Using the symbols provided, write the steady state condition for each
of the two regions outlined by dotted lines in the figure. (b) Example: The
current IV through the vena cava is 8.0× 10−2 kg/s, while the current IL

through the lung circulatory system is 8.4× 10−2 kg/s. By relating these
currents to the current IC in the coronary circulatory system, find the
value of IC . (Answer: 103) (Suggestion: [s-7])

B-2
Properties: What are the possible signs of the quantities appear-
ing in a statement of the steady-state condition, such as text

Eq. (B-5)? (Answer: 106)

B-3
Figure B-4 shows the blood circulation channels between an
artery A and a vein V in an extremity (e.g., a finger). Blood

flows from the artery to the vein through the capillary bed C and also
through an alternate channel called an “arteriovenous anastomosis” or
AVA. Let us call IA, IV, IC, and IAVA the magnitudes of the average
currents in these channels. (a) Relating quantities: Express the current

14
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AVA

A

C

V

Fig. B-4.

An

Ap

Fig. B-5.

IC in terms of the currents IA and IAVA. (b) Dependence: Some current
normally flows in the AVA. But when the extremity becomes cold enough,
the AVA closes abruptly, reducing the current IAVA to zero. If the cur-
rent IA in the artery remains constant, what happens to the current IC of
heat-carrying blood in the capillary bed? (In fact, IA decreases slightly
but the result is the same.) (Answer: 112) (Practice: [p-2])

Applying the Steady State Condition (Cap. 2)

B-4
Lesions called “atherosclerotic plaques” sometimes develop on the
interior of an artery, thus narrowing the blood flow channel. The

cross-sectional area Ap of the artery near the plaque is thus smaller than
the cross-sectional area An of a normal part of the artery (see Fig. B-
5). Let us call Ip and In the magnitudes of the average blood currents
through these areas, and vp and vn the average speeds of the blood at these
areas. (a) Write an equation relating the currents Ip and In. (b) Write
an equation relating the average speeds vp and vn. Is the blood speed vp

near the plaque larger than, equal to, or smaller than the normal blood
speed vn? (c) Suppose the plaque reduces the cross-sectional area of the
artery to one-fifth its normal value, so that Ap = An/5. For this situation,
express vp as a number times vn. (Answer: 109) (Suggestion: [s-3])

B-5
A cylindrical fire hose has an inside diameter of 10 cm, while the
hole at the end of the fire hose nozzle has a diameter of 2.0 cm.

In the steady state, water flows in the hose with an average speed of
1.0m/s. What is the average speed of the water emerging from the nozzle?
(Answer: 114) (Suggestion: [s-5])

B-6
A garden hose having an inside radius of 1.0 cm is connected to a
simple sprinkler, which consists of a hollow metal enclosure with

20 identical holes drilled in the top. In the steady state, the average
speed of the water in the hose is 0.40m/s. What is the radius of the
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holes in the sprinkler if the water emerges from each hole with an average
speed of 8.0m/s? (Answer: 111) (Suggestion: [s-2]) More practice for
this Capability: [p-3], [p-4]
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SECT.

C WORK DONE BY PRESSURE

The pressure forces acting on a fluid can do work on the fluid when it
moves. To find this work, consider a fluid separated from another system
by a flat boundary surface of area A. (For example, Fig. C-1 shows such
a fluid enclosed in a cylinder and in contact with the flat surface of a
movable piston.) If the pressure at the boundary surface is p, the pressure
force exerted on the fluid by this boundary has a magnitude F = pA and
is in the direction perpendicular to the boundary toward the inside of
the fluid. Suppose then that the boundary moves by a distance L in a
direction perpendicular to the boundary while the pressure force on the
boundary remains constant. The workW done on the fluid by the system
on the other side of the boundary has the magnitude FL = (pA)L = pVs,
where Vs = AL is the volume swept out by the boundary as it moves
through the distance L. Thus the work W done on the fluid is,

if p is constant, W = ±pVs (C-1)

where the plus sign is applicable if the boundary moves toward the inside
the fluid (i.e., along the direction of the pressure force on the fluid), and
where the minus sign is applicable if the boundary moves toward the
outside of the fluid (i.e., opposite to the direction of the pressure force on
the fluid).

REMARK

If the entire surface bounding the fluid remains fixed except for the
motion of the flat boundary surface considered in Eq. (C-1), the volume
Vs swept out by this boundary is related to the change ∆V of the volume
of the fluid so that ∆V = Vs (with a minus sign if the boundary moves
toward the inside of the fluid, and a plus sign if it moves toward the
outside of the fluid). Hence Eq. (C-1) is then equivalent to the statement
that the work W done on the fluid is:

if p is constant, W = −p∆V (C-2)

Example C-1: Work done on the air inside a lung

The pressure on the air inside a lung has the same value p everywhere
along the walls of the lung and remains nearly constant when the lung

17
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pA

area A

L
Fig. C-1: Work done by the pressure force act-
ing on a moving boundary of a fluid.

contracts by a small amount. The work done on the air when a small part
of the wall of the lung moves is then p multiplied by the volume swept out
by this small part of the wall. Hence the total work done on the air when
all parts of the wall move is just p multiplied by the total volume swept
out by the entire wall of the lung (i.e., p multiplied by the magnitude of
the volume change of the contracting lung).

WORK DONE ON A FLOWING LIQUID

Consider a tube (or some more complicated system) separated from
an outside system by two surfaces S1 and S2. (See Fig. C-2.) An incom-
pressible liquid of density ρ flows from the outside system into the tube
through the surface S1 at a pressure p1; it then leaves the other side of the
tube to enter the outside system through the surface S2 at a pressure p2.
(For example, the outside system might consist of two water reservoirs
connected by a pipe.) When the liquid flowing through the tube is in a
steady state, the mass of the liquid in the tube remains constant. Hence,
when some mass M of liquid enters the tube from the outside system
through S1, a corresponding mass M of liquid must leave the other side
of the tube to enter the outside system through S2. In this process, what
is the work done by the outside system on the liquid originally in the
tube?

Suppose that some mass M of liquid enters the tube through the
surface S1. Then the liquid boundary originally located at S1 moves to

before

after

p1

S1

S1 S '
1

S2

S2 S '
2

p2

Fig. C-2: Work done on a portion of
moving fluid.
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some new surface S1, sweeping out a volume V1 = M/ρ. According to
Eq. (C-1), the work done on the liquid by the outside system is then
p1V1 = p1(M/ρ). In the preceding process, an equal mass M of liquid
must leave the other end of the tube through the surface S2. Then the
liquid boundary originally located at S2 moves to some new surface S

′
2,

sweeping out a volume V2 = M/ρ. The work done on the liquid by the
outside system is then negative (since the liquid boundary moves in
a direction opposite to the pressure force exerted on it by the outside
system on the other side of S2) and is equal to −p2V2 = −p2(M/ρ).
Hence the total work W done on the liquid by the outside system is

W = p1V1 − p2V2 = p1

M

ρ
− p2

M

ρ
= (p1 − p2)

M

ρ
(C-3)

Example C-2: Work done on the blood pumped by the heart

Blood leaves the ventricle of the heart at some pressure p1, flows into
the circulatory system (consisting of the aorta, capillaries, and the main
vein called the “vena cava”), and finally enters the auricle of the heart at
some lower pressure p2. The pressure difference p1 − p2 = 100mm-Hg =
1.3 × 104N/m2. We know from Example A-1 that every second about
8 × 10−2 kg of blood leaves the ventricle of the heart. (Hence an equal
mass of blood enters the auricle of the heart.) What is the work done by
the heart on this mass of blood?

Because the density ρ of blood is approximately 1.0 × 103 kg/m3,
the volume V of blood leaving the heart every second is
V = M/ρ = (8 × 10−2 kg)/(1.0 × 103 kg/m3) = 8 × 10−5m3. Hence the
relation (C-3) implies that the work done by the heart on this amount of
blood is

W = (1.3× 104N/m2)(8× 10−5m3) = 1 joule

Since this work is done in one second, the average power delivered to the
blood by the heart is then (1 joule)/(1 second) = 1watt. *

* The delivery of this power requires approximately 10watt
of power consumed by the heart muscle (i.e., the efficiency of
the heart is only about 10 percent). These numbers can be
compared with the approximately 100watt of power supplied
to a person by his daily food intake.
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Knowing About Work Done by Pressure

C-1
The drug in a hypodermic syringe has a constant pressure of
2 × 105N/m2 as the drug is injected. If the end of the syringe’s

plunger has an area of 0.8 cm2 and moves a distance of 4 cm, what is the
volume Vs swept out by the plunger? What is the work W done on the
drug by the plunger? (Answer: 118)

C-2
Let us use the relation W = −p∆V to find the work done on the
air by the lungs during the breathing cycle. During inhalation and

exhalation, the volume of air in the lungs increases and then decreases
by an amount Vt called the “tidal volume.” To estimate the work done,
let us assume that the air in the lungs has a constant pressure pi during
inhalation and a constant pressure pe during exhalation. (a) What is
the change ∆V in the volume of air in the lungs during inhalation and
during exhalation? Express your answers in terms of Vt. (b) What are
the works Wi and We done on the air by the lungs during inhalation and
exhalation? What then is the total work W = Wi + We done during
the entire breathing cycle? (c) Use the values Vt = 5 × 10−4 m3 and
(pe − pi) = 4 × 102N/m2 to find the total work W . (d) The duration of
the breathing cycle is about T = 2 second. What is the average power
P = W/T delivered to the air by the lungs during the breathing cycle?
(Answer: 116)

C-3
Let us use the relation W = (p1 − p2)(M/ρ) to find the work
done on the water flowing steadily in a garden hose. The water

flows from the faucet end of the hose where the water pressure is 1.2 ×
105N/m2 to the other end of the hose where the water pressure equals the
atmospheric pressure of 1.0 × 105N/m2. The magnitude of the constant
water current in the hose is 0.5 kg/s. (a) Review: What is the mass of
the water entering the hose at the faucet (or leaving the hose at the other
end) in one minute? (b) What is the work done on the flowing water in
one minute? (Answer: 113)
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SECT.

D SIMPLE DISSIPATIVE FLOW

Consider the simple situation where an incompressible fluid (such as
water) flows through a straight horizontal tube of constant cross-section.
(See Fig.D-1.) Suppose that there were no dissipation of the macroscopic
energy of the fluid in the tube into random internal energy. Then the
macroscopic energy of the fluid in the tube would remain constant without
requiring energy to be supplied from any outside system to which the tube
is connected. Since the macroscopic gravitational potential energy of the
fluid in a horizontal tube does not change, the macroscopic kinetic energy
of the fluid would then remain constant and the fluid would simply keep
moving along the tube with constant speed.

But in most situations the dissipation of macroscopic energy of a
flowing fluid is appreciable. Unless macroscopic energy is supplied to the
fluid in the tube from some outside system, the macroscopic energy of the
fluid then gradually decreases while its random internal energy increases.
The macroscopic kinetic energy of the fluid thus gradually approaches
zero so that the fluid comes to rest.

Suppose, however, that the fluid in the tube is connected to an outside
system from which it can gain energy (e.g., that it is connected by pipes
to a pump). Then the random internal energy of the fluid in the tube
can increase at the expense of the macroscopic energy received from the
outside system, rather than at the expense of the macroscopic kinetic
energy of the fluid in the tube. Thus the fluid in the tube can be kept
flowing with constant speed despite the dissipation of macroscopic energy.

To maintain such a steady flow, the fluid in the tube must be acted
on by some total force ~F due to the outside system. Suppose that the
pressures at the two ends of the tube are p1 and p2. Then this force ~F
(which is the vector sum of the oppositely directed pressure forces acting
on the fluid at the two ends of the tube) is in the direction from the end at
the higher pressure to the end at the lower pressure, and has a magnitude
proportional to the pressure difference p1 − p2. Thus we expect that the
direction of the fluid current I in the tube should be in the direction of the
force ~F , i.e., that the fluid should flow from the high-pressure end toward
the low-pressure end of the tube. Furthermore the magnitude of the
current I should be zero when the force ~F = 0, and should increase with
increasing magnitude of this force. In other words, I = 0 when p1−p2 = 0
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p1 p2I
Fig.D-1: Steady flow of a fluid through a
horizontal tube of constant cross-section.

and the magnitude of I should increase with increasing magnitude of the
pressure difference. Thus the current I should depend on the pressure
difference in the manner indicated qualitatively by the graph in Fig.D-
2. This graph indicates properly that the direction of I (i.e., its sign)
reverses when the pressure difference p1 − p2 has the opposite sign.]

ENERGY ARGUMENTS

The preceding statements can be justified by considering the energy
transformations in the entire system consisting of the fluid in the tube
plus the outside system connected to it. (The fluid current through the
tube should depend only on the properties of the fluid in the tube, but
not on the properties of the outside system. For simplicity, we may then
assume that the outside system is such that its random internal energy
remains unchanged.)

The conservation of energy implies that the increase of the random
internal energy of the entire system is equal to the decrease in the total
macroscopic energy of this system. But, if the fluid flows with constant
speed in a horizontal tube, neither the macroscopic kinetic energy nor
the macroscopic potential energy of the fluid in the tube changes. Hence
the decrease in the macroscopic energy of the entire system is just due
to the decrease in the macroscopic energy of the outside system, i.e., to
the macroscopic work W done by this outside system on the fluid in the
tube (since the random internal energy of the outside system is assumed
to remain unchanged.) Suppose then that a mass M of fluid enters one
end of the tube at a pressure p1 and a corresponding mass M of fluid
leaves the other end of the tube at a pressure p2. Then the work W done

p - p1 2

(or E )D ran

I

Fig.D-2: Qualitative graph showing
how the fluid current in a tube varies
with the pressure difference p1 − p2.
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in this process is given by Eq. (C-3), so that the random internal energy
of the entire system changes by the amount

∆Eran = (p1 − p2)
M

ρ
(D-1)

We know from Unit 416 that the random internal energy Eran of the
entire isolated system always tends to increase. Hence any small mass M
of fluid tends to pass through the tube in such a direction that the change
∆Eran is positive, i.e., so that positive work W is done on the mass M of
fluid. Thus this mass of fluid must pass through the tube from its high-
pressure end to its low-pressure end, i.e., the mass current I of the fluid
must flow in this direction. This will happen unless the entire system has
attained the equilibrium situation where there is no net flow of fluid (so
that I = 0), and where there is no change in the random internal energy
(so that ∆Eran = 0) if some small mass M of fluid passes through the
tube. The preceding comments show that the magnitude of the current
I is related to the change in random internal energy so that I 6= 0 when
∆Eran 6= 0 and that I = 0 when ∆Eran = 0. But according to Eq. (D-
1), Eran is proportional to the pressure difference (p1 − p2) between the
ends of the tube. Hence our preceding comments imply that I 6= 0 when
(p1− p2) 6= 0 and that I = 0 when (p1− p2) = 0. Thus we arrive again at
the conclusion that the current I must depend on the pressure difference
(p1− p2) in the manner illustrated qualitatively by the graph in Fig.D-2.

Any smooth continuous curve is straight in a small enough region.
Near the point where p1 − p2 = 0 and I = 0, the graph in Fig.D-2 must
thus be nearly straight in the region where the magnitude of the pressure
difference p1 − p2 is small enough. Accordingly, the current I must then
be related to the pressure difference so that

I =

(

1

R

)

(p1 − p2) =
p1 − p2

R
(D-4)

where (1/R) is a constant independent of I or (p1−p2). (Equivalently, this
means that I is then simply proportional to the pressure difference.) The
constant R is conventionally called the “resistance” of the tube and its
reciprocal (1/R) the “conductance” of the tube. The value of R depends
on the properties of the tube and fluid under consideration. In practice,
the relationship Eq. (D-4) is valid for a sufficiently large range of pressure
differences to be of considerable practical utility.
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The relation (D-4) implies properly that I = 0 if the pressure dif-
ference p−p2 = 0 Furthermore, Eq. (D-4) has been written with the un-
derstanding that the direction of positive current is from the end at the
pressure p1 to the end at the pressure p2. Thus the current is properly
in this direction if p1 is larger than p2, and is of opposite direction (i.e.,
of opposite sign) if p1 is smaller than p2 so that p1 − p2 is negative. The
resistance R of the tube describes how large a current is produced by a
pressure difference existing between the two ends of the tube. If the resis-
tance R of the tube is large (i.e., if its conductance 1/R is small), a given
pressure difference produces a small current through the tube. But if the
resistance R of the tube is small (i.e., if its conductance 1/R is large), the
same pressure difference produces a large current through the tube.

The resistance R of a tube depends on the dissipative properties of
the fluid and on the dimensions of the tube. For example, for a tube of
given dimensions, the resistance is larger if the fluid is a highly viscous (or
“sticky”) liquid such as molasses, than if the fluid is a fairly nonviscous
liquid such as water. For a given fluid, the resistance of a longer tube is
larger than that of a shorter tube. (Indeed, the resistance R is propor-
tional to the length L of the tube. But the resistance R of a wider tube is
smaller than that of a narrower tube. (Indeed, for a slowly flowing viscous
fluid, R is related to the diameter D of the tube so that R ∝ 1/D4. Thus
a tube having a diameter 2 times as large has a resistance smaller by a
factor 1/24 = 1/16).

Example D-1: Flow of water through a hose

Consider a horizontal garden hose connected at one end to a water
faucet and open at the other end to the atmosphere. Then the pressure
at one end of the hose is the fixed pressure of the water supply, while
the pressure at its other end is the atmospheric pressure. Thus a fixed
pressure difference p1−p2 is maintained between the two ends of the hose.
If the hose is long, its resistance is large and the fluid current (or water
emerging from the hose per second) is smaller than if the hose is short.
But if the hose has a large internal diameter, its resistance is small and
the fluid current through the hose is considerably larger than if the hose
has a small diameter.

Knowing About Resistance to Fluid Flow

D-1
(a) To obtain the largest possible water current in a fire hose,
should one make the resistance of the hose as large or as small as
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p2

p = p2 ap1

p = p1 a
(a) (b)

Fig.D-3.

possible? (b) Which of the following steps would decrease the resistance
to water flow in fire hoses? 1. Making hoses larger in diameter. 2. Making
hoses longer. 3. Chemically treating water used in fire-fighting to lower
its viscosity. (Answer: 120)

Understanding (I = (P1 − P2)/R) (Cap. 1d)

D-2
Statement and example: Two water tanks A and B are connected
by a horizontal pipe of length 10meter and inside diameter 2 cm.

The resistance of the pipe to water flow is R = 2.5 × 103m−1 s−1. Let
us call pA and pB the water pressures in tanks A and B at the two ends
of the pipe. (a) Write an expression for the mass current I of water
through the pipe in the direction from tank B to tank A. (b) Suppose
that pA = 3 × 105N/m2. What is the magnitude of the current I and
the direction of water flow if pB = 2 × 105N/m2, if pB = pA, and if
pB = 4× 105N/m2? (Answer: 117)

D-3
Applicability: Why does the relation I = (p1 − p2)/R not apply
to each of the following situations? (a) The U-tube manometer

in Fig.D-3a contains a liquid at rest. Thus there is no current in the tube,
although the liquid pressures p1 and p2 are different so that the pressure
difference (p1 − p2) is not zero. (b) The pipe in Fig.D-3b carries water
between the surfaces of two large reservoirs. Thus there is a current in the
pipe, although the water pressures at the end of the pipe are both equal
to atmospheric pressure so that the pressure difference (p1 − p2) = 0.
(Answer: 122)

D-4
Relating quantities: (a) Consider a 10 cm section of the horizontal
aorta in a person who is lying down. The resistance of this section

is about 80m−1 s−1, and the average current of blood flowing away from
the heart through this section is 8× 10−2 kg/s. What is the magnitude of
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the difference between the blood pressures at the ends of this section of
aorta? Is the pressure at the end near the heart larger or smaller than the
pressure at the other “down-stream” end? (b) During a blood transfusion,
the horizontal needle inserted into the patient’s vein carries a steady mass
current of 1× 10−4 kg/s (which corresponds to a volume current of about
0.1 cm3/s). The blood pressure in the supply tube at the entrance to the
needle is 1.1× 105N/m2, while the blood pressure in the vein at the end
of the needle is 1.0× 105N/m2. What is the needle’s resistance to blood
flow? (Answer: 115)

D-5
Dependence: A gardener wants to increase the current through
the horizontal hose carrying water from his house to his garden.

Which of these alternatives would increase the current, and which would
decrease it? (The water pressure at the garden end of the hose remains
equal to atmospheric pressure in all of these alternatives.) (a) Turning
off the dishwasher in the house, which increases the water pressure at
the house end of the hose. (b) Attaching a nozzle to the hose, which
increases the resistance of the hose. (c) Replacing the hose with a shorter
one. (d) Replacing the hose with one of smaller diameter. (Answer: 119)
(Practice: [p-5])
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SECT.

E GENERAL STEADY FLOW

Consider the general steady flow of an incompressible fluid flowing
through a tube which is not necessarily horizontal and which is not nec-
essarily of the same diameter along its length. (See Fig. E-1.) Then we
can readily generalize the energy argument of the preceding section in
order to discuss the dissipative steady flow of the fluid through such a
tube connected to some outside system.

Consider again the situation where a mass M of incompressible fluid
enters the tube at one end and an equal mass of fluid leaves the tube at
the other end. The random internal energy Eran of the entire isolated
system changes then for several reasons. Part of the increase of this
random energy is again due to the work W = (p1 − p2)M/ρ done by the
outside system on the fluid originally between the two ends of the tube
(i.e., due to the decrease in potential energy of interaction between this
fluid and the outside system connected to the tube). But, in addition,
the random internal energy can now also increase because of the decrease
in the macroscopic gravitational potential energy and the decrease in the
macroscopic kinetic energy of the fluid originally in the tube. Indeed,
when the mass M of fluid enters the tube at one height y1 and an equal
mass M of fluid leaves the tube at another height y2, the macroscopic
gravitational potential energy of the entire fluid decreases by an amount
Mgy1 −Mgy2 =Mg(y1 − y2).*

* If this quantity is negative, this negative decrease corre-
sponds to an actual increase in gravitational potential energy.

p2

y2y1

p1
v1

v2

Fig. E-1: Steady flow of a fluid
through a tube.
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Furthermore, we know from Sec. B that, if the diameter of the tube
is different at its two ends, the speed of the fluid is also different at the
two ends. Thus, when a mass M of fluid enters the tube at one end with
a speed v1 and an equal mass M of fluid leaves the tube at its other end
with a speed v2, the kinetic energy of the entire fluid decreases by an
amount 1/2Mv2

1 − 1/2Mv2
2 = 1/2M(v

2
1 − v2

2). The increase in ∆Eran

in the random internal energy of the entire isolated system is then, by
conservation of energy, equal to the sum of the decreases in all these
other forms of energy. Accordingly we can write:

∆Eran = (p1 − p2)
M

ρ
+Mg(y1 − y2) +

1

2
M(v2

1 − v2
2)

or

∆Eran =
M

ρ

[

(p1 − p2) + ρg(y1 − y2) +
1

2
ρ(v2

1 − v2
2)

]

(E-1)

Our energy argument of the preceding section then still holds with
this more complicated form of the change of random internal energy. Thus
the fluid current I 6= 0 if ∆Eran 6= 0 and I = 0 if ∆Eran = 0. If ∆Eran

is not too large, the current I is then again proportional to ∆Eran. Thus
we can use the result Eq. (E-1) to write our previous result Eq. (D-4) in
this more general form:

I =
1

R

[

(p1 − p2) + ρg(y1 − y2) +
1

2
ρ(v2

1 − v2
2)

]

(E-2)

Note that the fluid current through the tube depends now not only on
the pressures at the two ends of the tube, but also on the heights of these
two ends and on the speed of the fluid at these two ends.

STEADY FLOW WITH NEGLIGIBLE DISSIPATION

In the special case where the dissipation of the macroscopic energy
of the fluid is negligible, its random internal energy remains constant so
that ∆Eran = 0. Hence Eq. (E-1) implies then that

(p1 − p2) + ρg(y1 − y2) +
1

2
ρ(v2

1 − v2
2) = 0

Thus

p1 + ρgy1 +
1

2
ρv2

1 = p2 + ρgy2 +
1

2
ρv2

2

or
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P2
P1

Fig. E-2: Measurement of the flow
speed of a liquid from the difference
in pressures in the pipe and in a nar-
row constriction.

p+ ρgy +
1

2
ρv2 = constant (E-3)

This last statement (which is also true even if the fluid is compressible)
is called “Bernoulli’s principle.” *

* When there is no dissipation of macroscopic energy, I can
be non-zero despite the fact that ∆Eran = 0. This result is
compatible with Eq. (E-2) since then the resistance R = 0.

As a simple application of the relation (E-3), consider a fluid flowing
in a steady state with negligible dissipation through a horizontal tube.
Then the height y of the fluid remains constant and Eq. (E-3) implies
simply that p+(1/2)ρv2 = constant. This means that, in a narrow section
of the tube, where the speed of the fluid must be larger, the pressure in
the fluid must be smaller. For example, suppose that an artery becomes
narrowed somewhere as a result of fatty deposits on its inside wall. At
this place the pressure inside the artery becomes then smaller, so that the
artery can be more readily collapsed by the external forces on it. Thus,
the narrowing of an artery tends to produce still further narrowing, a
self-aggravating process which can ultimately lead to fatal consequences
(such as a heart attack).

Example E-1: Measurement of flow speed of a liquid

To measure the speed v1 of an incompressible liquid moving with
negligible dissipation in a horizontal pipe, of cross-sectional area A1, it
is only necessary to connect to the pipe a small section of smaller cross-
sectional area A2. (This arrangement is called a “Venturi meter.”)(See
Fig. E-2.) In the steady state, the speed v2 of the fluid in the narrow
section is then such that A1v1 = A2v2, so that v2 = (A1/A2)v1 is larger
than v1. According to Eq. (E-3), we then find that
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p1 +
1

2
ρv2

1 = p2 +
1

2
ρv2

2

or

p1 − p2 =
1

2
ρ(v2

2 − v2
1) (E-4)

so that p1 is larger than p2. The pressure difference p1−p2 can readily be
measured by noting the heights of the liquid in vertical tubes connected
to the wide and narrow sections of the pipe (as shown in Fig. E-2.) From
this measured pressure difference one can then use Eq. (E-4) to find the
speed v1 of the liquid in the pipe.

REMARK ON APPLICABILITY

All the arguments in this section apply to any tube, provided that no
fluid flows through its sides. This tube might thus be a real tube (such
as a copper tube) whose sides consist of solid material, or it might be
an imaginary tube chosen within a fluid so that its sides are everywhere
parallel to the velocity of the fluid (i.e., so that no fluid flows through
the sides of this imaginary tube). By applying our arguments to such
imaginary tubes in a fluid not necessarily enclosed in a real tube, all our
results, including Eq. (E-3), can be applied to any fluid in a steady state.

Applying Bernoulli’S Principle In the Steady State

In the following problems, assume that the fluid described flows
steadily with negligible dissipation so that both Bernoulli’s principle
and the steady state condition apply.

E-1
Water flows from the city mains through a fire hose whose nozzle
directs the stream of water vertically upward. What water pres-

sure pm is required in the mains if the water is to reach a height of 30meter
above the mains? The speed of the water in the mains is negligible, and
the water pressure at the top of the stream (where the water is momen-
tarily at rest) is equal to the atmospheric pressure of 1.0 × 105N/m2.
(Answer: 124) (Suggestion: [s-6])

E-2
Consider an atherosclerotic plaque in a horizontal artery so that
all points in this artery have about the same height. Suppose

that the plaque reduces the diameter of the circular cross-section of the
bloodstream to one-third the normal value. (a) If the average speed of
the blood in the normal part of the artery is 0.30m/s, what is the average
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speed of the blood near the plaque? (b) What is the difference between
the blood pressure in the normal part of the artery and the blood pressure
near the plaque? (Answer: 121)

E-3
Consider the “Venturi meter” described in text example E-1. Let
us show how the speed v1 of the liquid in the main pipe can be

found from the known cross-sectional areas A1 and A2 and the known
heights h1 and h2 of the columns of stationary liquid in the left and
right vertical tubes. (These heights are measured from the bottom of
each tube, where the liquid pressures are p1 and p2.) (a) Express the
pressure difference (p1 − p2) in terms of v1, ρ, A1, and A2 alone. Then
express this pressure difference in terms of ρ, g, h1, and h2 alone. (b)
By combining these results, write an equation for the speed v1 in terms
of known quantities. (c) Suppose the flowing liquid is water and that
A1 = 2A2. If h1 = 40 cm and h2 = 25 cm, what is the speed v1 of the
water in the main pipe? (Answer: 126) (Suggestion: [s-1])
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SECT.

F SUMMARY

DEFINITIONS

mass current; Def. (A-1)

steady state; Def. (B-1)

IMPORTANT RESULTS

Relation between mass current and flow velocity: Eq. (A-2)

I = ρAv (if ~v is perpendicular to surface)

Steady-state condition:

Iin = Iout

Work done on a fluid: Eq. (C-1)

W = ±pVs (if p is constant)

Dissipative flow in a horizontal uniform tube: Eq. (D-4)

I = (p1 − p2)/R (for incompressible fluid)

Steady dissipationless flow (Bernoulli’s principle): Eq. (B-4)

p+ ρgy + (1/2)ρv2 = constant

NEW CAPABILITIES

You should have acquired the ability to:

(1) Understand these relations:

(a) the definition I = dM/dt of mass current (Sec.A),

(b) the relation I = ρAv (Sec. A, [p-1]),

(c) the steady state condition Iin = Iout (Sec. B, [p-2]),

(d) the relation I = (p1 − p2)/R (Sec.D, [p-5]).

(2) For an incompressible liquid entering and leaving a closed region by
several channels, apply the steady state condition to relate the average
liquid speeds in these channels and quantities describing the cross-
sectional areas of these channels. (Sec. B, [p-3], [p-4])
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Applying Relations Describing Fluid Flow (Cap. 1, 2)

F-1
A horizontal hose of inside diameter 1.0 cm has a resistance to
water flow of 4.0 × 104m−1 s−1. The water pressure at the end

of the hose attached to a faucet has a constant value of 1.20× 105N/m2,
and the pressure of the water emerging from the open end of the hose is
equal to the atmospheric pressure of 1.00 × 105N/m2. The water is in
steady flow. (a) What are the magnitudes of the mass current I and the
volume current I ′ of the water in the hose? What is the average speed v
of the water in the hose? (b) Suppose that a person now puts a thumb
partially over the end of the hose, reducing the cross-sectional area of the
emerging water stream to 1/5 of the cross-sectional area of the stream in
the hose. If the average speed of the steadily-flowing water in the hose
is now v = 6.2m/s, what is the magnitude of the mass current I in the
hose? What is the average speed V of the water in the narrow opening
where the water emerges? If the water pressure at the faucet is the same
as before, what is the water pressure pe in the end of the hose, just behind
the person’s thumb? (Answer: 123)
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SECT.

G PROBLEMS

G-1
Peripheral resistance of the circulatory system: In analogy to
the resistance of a horizontal tube, physiologists define the “to-

tal peripheral resistance” R of the circulatory system by the relation
I = (pA − pV )/R, where I is the average current flowing through the
circulatory system from the aorta (where the average blood pressure is
pA) to the vena cava (where the average blood pressure is pV ). In contrast
with the resistance of a horizontal tube, however, the value of R is not
a constant independent of pressure and current. Indeed, R can change
dramatically, largely because of changes in the diameters of blood vessels
due to both chemical stimuli and the variable distension of the vessels
under pressure. (a) In a resting person, the average pressure difference
(pA − pV ) is 100mm-Hg or 1.3× 104N/m2, and the average current I is
8.0 × 10−2 kg/s. What is the total peripheral resistance R in a resting
person? (b) In moderate exercise, the average current I is about 3 times
that in rest, while the average pressure difference (pA− pV ) is only about
50 percent larger, or 150mm-Hg = 2.0× 104N/m2. What is the value of
R in moderate exercise? This change is probably due to an increase in the
diameter of the arterioles (small arteries leading into the capillary beds),
since these vessels contribute about 40 percent of the total resistance R.
(Answer: 128)

G-2
Stress on the heart due to a bullet wound in a limb: Suppose
that a bullet passes through a limb, opening an alternate channel

between an artery and a vein (Fig.G-1). Let us investigate the blood flow
after external bleeding has been stopped, so that the blood flows only in
the channels shown in the figure. To do so, we shall treat the circulatory
system in the limb as a horizontal tube of resistance RL, so that the
average current IL through this system is IL = (pA − pV )/RL, where pA

and pV are the average blood pressures in the artery and vein. Suppose
that the channel opened by the bullet is a horizontal tube having a typical
resistance RB = RL/4. (a) Write an expression for the current IB through
this channel. Using this result, express IB as a number times IC . (b)
Because of the body’s regulative mechanisms, the pressure difference (pA−
pV ) has about the same value before and after the passage of the bullet,
so that the current IC through the limb remains roughly the same. Let
us call IA and I ′A the currents flowing in the artery before and after the
passage of the bullet. Is I ′A larger than, equal to, or smaller than IA?
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Fig.G-1.

A1

A2

Fig.G-2.

funnel

Fig.G-3.

Express IA and I ′A in terms of IC , using your previous results, and then
express I ′A as a number times IA. This change in arterial current causes a
serious stress on the heart, since the arterial flow becomes similar to that
in a person doing exercise. (Answer: 125)

G-3
Speed of a liquid emerging from a tank: Consider a leaky cylin-
drical tank of cross-sectional area A1, which contains a liquid of

density ρ (Fig.G-2). The liquid is emerging from a hole in the bottom
with an average speed v2 in a stream of cross-sectional area A2. The liquid
at the surface in the tank, a distance h above the bottom, is thus flowing
downward with some smaller speed v1. The pressures in the emerging
stream and at the surface in the tank are both equal to atmospheric pres-
sure. (a) Write an equation for the average speed v2 of the emerging liquid
in terms of ρ, g, h, A1, and A2. (b) Suppose that the hole is small, so that
A2 is much smaller than A1. (Correspondingly, the liquid speed v1 at the
surface is negligible.) Show that v2 =

√
2gh in this situation. How does

this speed compare with the speed of an object which has fallen a distance
h from rest? This result is called “Torricelli’s theorem.” (Answer: 129)

G-4
Picking up an object without touching it: Figure G-3 shows an
ingenious method for picking up a small object (e.g., a crystal)

without touching and contaminating it. Air flows steadily out of a funnel
and around the object along the “streamlines” shown, so that we can
consider the shaded region to be a “tube” of varying cross-section filled
with air in steady flow. Let us see how this air can exert an upward force
on the object. (a) Is the average air speed va above the object larger or
smaller than the average air speed vb below it? (b) The air flows with
negligible dissipation, and the quantity ρgy has about the same value
above and below the object (since the density ρ of air and the size of the
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object are both small? Is the air pressure pa above the object larger or
smaller than the air pressure pb below it? (c) Is the magnitude of the air

pressure force ~Fa on the top surface of the object larger or smaller than
the magnitude of the air pressure force ~Fb on the bottom? What is the
direction of the sum of these forces? (Answer: 127)
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PRACTICE PROBLEMS

p-1 UNDERSTANDING THE RELATION I = ρAV (CAP. 1B): The

stream of water flowing over the top of a dam has a rectangular cross-
section 2 cm high and 5meter wide. (a) If the average speed of the water
in this stream is 2m/s, what is the mass current of water flowing over
the dam? (b) The mass current of water in the river below the dam is
the same as that at the top of the dam. If the cross-sectional area of the
stream of water in the river is 100 times that at the top of the dam, what
is the average speed of the water in the river? (Answer: 2) (Suggestion:
review text problems A-5 through A-7.)

p-2 UNDERSTANDING THE STEADY STATE CONDITION

(CAP. 1C): A recirculating fountain in a park has 5 jets from which wa-
ter shoots upward and falls into a large pool. Water from the pool flows
through a drain to a pump, and from the pump to the jets. Suppose that
the mass current through each jet is the same, and that the entire system
consisting of this fountain is in the steady state. If the magnitude of the
mass current of water through the pump is Ip = 10 kg/s, what is the mag-
nitude Ij of the mass current through each jet? What is the magnitude Id

of the mass current through the drain? (Answer: 4) (Suggestion: review
text problems B-1 and B-3.)

p-3 APPLYING THE STEADY STATE CONDITION (CAP. 2): A

large pipe of diameter D is connected to two smaller pipes, each of diam-
eter d. Water flows steadily from the large pipe into the small pipes. (a)
Suppose that the average water speed V in the large pipe is equal to the
average water speed v in each of the small pipes. Express the diameter
D of the large pipe as a number times the diameter d of the small pipes.
(b) Alternatively, suppose that the small pipes are each half the diameter
of the large one, so that d = 1/2D. Express the average water speed v in
each small pipe as a number times the average water speed V in the large
one. (Answer: 1) (Suggestion: review text problems B-4 through B-6.)

p-4 APPLYING THE STEADY STATE CONDITION (CAP. 2): A

city water main having an inside radius of 10 cm ultimately branches out
into 50 pipes of inside radius 1.0 cm, each of which supplies water to a
house. To find the maximum water speed in the main, suppose that
water is in steady flow with its maximum average speed of 10m/s in each
pipe supplying a house. What is the average water speed in the main
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under these conditions? What is the corresponding mass current in the
main? (Answer: 5) (Suggestion: review text problems B-4 through B-6.)

p-5 UNDERSTANDING THE RELATION I = (P1 − P2)/R

(CAP. 1D): A 1km section of horizontal water pipeline has a resistance to
flowing water of 25m−1 s−1. (a) What is the magnitude of the difference
between the water pressures at the ends of this section when water flows
steadily through it with a mass current of magnitude 160 kg/s? Is the
water pressure larger at the upstream or downstream end of this section?
(b) Suppose the resistance of this section were smaller. Would the same
pressure difference between its ends produce a smaller or a larger mass
current through the section of pipeline? (Answer: 3) (Suggestion: review
text problems D-4 and D-5.)
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SUGGESTIONS

s-1 (Text problem E-3): Part (a): To obtain the first relation, use the
steady state condition to eliminate the speed v2 from Eq. (E-4) in the
text. To obtain the second relation, note that the liquid in each vertical
tube is at rest. Thus the liquid pressure at the bottom of each tube is
larger than atmospheric pressure by an amount ρgh, where h is the height
of the liquid column in the tube.

s-2 (Text example B-6): Since each hole in the sprinkler has the same
size and the water emerging from the hole has the same average speed,
the magnitude Is of the water current through each sprinkler hole is the
same. If Ih is the magnitude of the water current in the hose, the steady
state condition is then Ih = 20Is (since there are 20 holes). By expressing
each of the currents Ih and Is in terms of the corresponding average water
speed and radius of the water stream, you can write an equation for the
radius of the sprinkler holes in terms of known quantities. (If you need
more help, review text example B-1.)

s-3 (Text problem B-4): Consider the region between the two areas An

and Ap. The steady state condition for this region states simply that the
magnitudes of the currents through these areas must be equal, or In = Ip.
By expressing each of these currents in terms of the corresponding cross-
sectional area and average speed of the blood, you can obtain an equation
relating vn and vp. (Note that in this situation, as in the others we shall
consider, the density of the flowing liquid always has the same value. Thus
it may be divided out of equations expressing the steady state condition.)

s-4 (Text problem A-2): The mass current through a surface into a
region is I = dM/dt, where the quantity dM is interpreted as equal in
magnitude to the mass m of fluid flowing through the surface (in either
direction) during the time interval dt. If fluid is flowing into the region
through the surface, dM = +m; if fluid is flowing out of the region
through the surface, dM = −m. In either case, the sign of dM indicates
whether the fluid flowing through the surface tends to increase (dM =
+m) or decrease (dM = −m) the mass M of fluid in the region.
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s-5 (Text problem B-5): In applying the steady state condition, it is
useful to follow the general approach outlined by the questions in text
problem B-4. In this problem, you might begin by writing an equation
relating the magnitude of the water current through a cross-section of
the hose to the magnitude of the water current through the hole in the
nozzle. Each of these current magnitudes can then be expressed in terms
of symbols for the average water speed and the diameter of the circular
cross-sectional area of the water stream, using the result that the area of a
circle having a diameter d is A = π(d/2)2 = πd2/4. The resulting equation
relates the unknown water speed at the nozzle to known quantities. Note
that the density of the water is the same in the hose as it is in the nozzle,
so that this quantity can be eliminated from the equation.

s-6 (Text problem E-1): Since Bernoulli’s principle applies, the quantity
p+(1/2)ρv2+ρgy must have the same value everywhere along the path of
the flowing water. In particular, it must have the same value in the mains
as at the top of the stream from the fire hose. If we choose to measure
height upward from the mains, this quantity has the value pm+0+0 = pm

in the mains, since the water speed in the mains is negligible. Similarly,
this quantity has the value pt + 0 + ρgyt at the top of the stream, since
the water speed at this point is also zero. Therefore, we have the relation

pm = pt + ρgyt

Using the known values for the pressure pt and the height yt at the top
of the stream and for the water density ρ, you can find the value of the
pressure pm in the mains.

Note that applying Bernoulli’s principle is very similar to applying a con-
servation principle such as the principle of conservation of energy. We
need only express the value of the conserved quantity at different points
in terms of symbols for known and desired quantities, equate these ex-
pressions, and solve for the desired quantity.

s-7 (Text problem B-1): Part (a): The steady state condition Iin = Iout

equates the sum of all currents flowing into a region to the sum of all
currents flowing out of a region. (Thus currents flowing in channels which
do not cross the region’s boundaries do not appear in the steady state
condition for the region.) To write the steady state condition, first locate
all channels in which fluid is flowing into the region. The value of Iin is
then the sum of the magnitudes of the currents in these channels. (For
example, Iin = IB+IV for region 1 in Fig. B-3.) Then locate all channels in
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which fluid is flowing out of the region; the value of Iout is the sum of the
magnitudes of the currents in these channels. (For example, Iout = IA for
region 1.) Then use your results to write the relation Iin = Iout in terms
of the magnitudes of the currents in the channels crossing the boundaries
of the region. (For example, IB + IV = IA for region 1.)

Part (b): To relate the magnitudes of currents flowing in several connected
channels using the steady state condition, identify (perhaps by drawing a
dotted line) the junction region where these channels meet. Then write
the steady state condition for this region.
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ANSWERS TO PROBLEMS

1. a. D =
√
2d = 1.4d

b. v = 2V

2. a. 2× 102 kg/s
b. 2× 10−2m/s

3. a. 4.0× 103N/m2, upstream end

b. larger

4. Ij = 2kg/s, Id = 10 kg/s

5. 5.0m/s, 1.6× 102 kg/s
101. a. 12 kg

b. 3.0× 102 second (5minute)

102. 0.18m/s, smaller (about 2/3 of the speed in the aorta)

103. a. Region 1: IB + IV = IA. Region 2: IL + IB = IA + IC .

b. IC = IL − IV = 0.4× 10−2 kg/s

104. a. 8.0× 10−5m3/s = 80 cm3/s

b. 6.0× 10−4 kg/s

105. 4× 10−1 kg/s (or about 5 times the average current)

106. +, 0

107. a. 100 kg/s

b. 100 kg/s

c. 50 kg/s

108. a. Surface 1: +4 kg. Surface 2: -4 kg. Both: 0 kg.

b. Surface 1: +2 kg/s. Surface 2: -2 kg/s. Both: 0 kg/s.

109. a. Ip = In.

b. Apvp = Anvn or equivalent; larger than.

c. vp = 5vn

110. a. Area: 5× 10−11m2. Current: 2× 10−11 kg/s

b. 5× 107 second (about 1 year and 8months!)
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111. 5.0× 10−4meter(0.5mm)

112. a. IC = IA − IAV A

b. IC increases.

113. a. 30 kg

b. 6× 102 J

114. 25m/s

115. a. 6N/m2 (0.05mm-Hg); larger than.

b. 1× 108m−1 s−1

116. a. Inhalation: ∆V = +Vt. Exhalation: ∆V = −Vt.

b. Wi = −piVt, We = +peVt, W = (pe − pi)Vt

c. W = 0.2 J

d. P = 0.1watt (or 10 percent of the average power delivered by the
heart to the blood)

117. a. I = (pB − pA)/R

b. If pB = 2×105N/m2: 40 kg/s, from tank A to tank B. If pB = pA:
current is zero. If pB = 4 × 105N/m2: 40 kg/s, from tank B to
tank A.

118. Vs = AL = 3 cm3 = 3× 10−6m3, W = +pVs = 0.6 J

119. Increase: (a) and (c). Decrease: (b) and (d).

120. a. As small as possible.

b. Steps 1 and 3.

121. a. 2.7m/s

b. 3.6× 103N/m2 (about 30mm-Hg)

122. The relation applies only to horizontal tubes. Neither of the tubes
described is horizontal.

123. a. I = 0.50 kg/s, I ′ = 5.0× 10−4m3/s, v = 6.4m/s

b. I = 0.49 kg/s, V = 31m/s, pe = (1.01 or 1.00)× 105N/m2

124. 4.0× 105N/m2

125. a. IB = (pA − pB)/RB , IB = 4IL

b. Larger. IA = IL. I
′
A = IB + IL = 5IL. I

′
A = 5IA.
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126. a. (p1 − p2) = (1/2)ρv
2
1 [(A1/A2)

2 − 1]
b. (p1 − p2) = ρg(h1 − h2)

c. v1 =
√

2g(h1 − h2)/[(A1/A2)2 − 1]
d. v1 = 1.0m/s

127. a. larger than

b. smaller than

c. smaller than; upward

128. a. 1.6× 105m−1 s−1

b. 8× 104m−1 s−1 or about half the resting value.

129. a. v2 =
√

2gh/[1− (A2/A1)2]

b. If A2 is much less than A1, the term [1 − (A2/A1)
2] = 1, so that

v2 =
√
2gh. It is the same as the speed of an object which has

fallen a distance h from rest.
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