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Abstract:
In this unit we shall apply the theory of motion to various simple situa-
tions frequently encountered in everyday life. We shall begin by examining
some common forces. A knowledge of these forces will then permit us to
use systematically the equation of motion m~a = ~F to understand and
make predictions about many diverse situations.
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SECT.

A LONG-RANGE AND CONTACT FORCE

To describe the forces encountered in everyday life, it is often not
necessary to understand in detail how these forces result ultimately from
the fundamental forces between individual atoms. Instead, it is usually
quite sufficient to describe many common forces from an “empirical” point
of view, i.e., to describe only their gross observable properties. (Such an
empirical approach is useful in many fields. For example, considerable
progress can be achieved in biology or medicine without the need to un-
derstand all the biochemical reactions responsible for biological function-
ing.)

From such an empirical point of view, it is useful to distinguish be-
tween two kinds of forces on one object due to another. The first kind of
force is readily observable even if the separation between the interacting
objects is appreciable. Such a force is called a “long-range” force. For
example, a ball thrown upward near the surface of the earth is acted on
by the downward “gravitational” force due to the earth (since the ball
is accelerated in the downward direction), even if the ball is at a large
distance above the surface of the earth. Similarly, a magnet experiences
a “magnetic” force due to another magnet although the magnets do not
touch each other. Hence such gravitational or magnetic forces are both
long-range forces.

The other kind of force is observably large only if the separation
between the interacting objects is of atomic size (i.e., about 10−10meter).
In other words, the force is appreciable only if the objects “touch” each
other (i.e., if the separation between them is negligibly small from a large-
scale point of view). Such forces, called “short-range” or “contact” forces,
arise whenever any two objects touch each other. Examples are the force
exerted on a nail by a hammer hitting the nail, the force exerted on a man
by the chair on which he is sitting, or the force exerted on a chandelier
by the chain from which it is suspended.

Contact forces are due to the forces which nearby atoms exert on
each other. For example, consider the force ~F on some object A by some
other object B with which it is in contact (e.g., on a person A by a mat-

tress B on which he is lying, as shown in Fig. A-1). Then the force ~F on
A is due to the interaction between the atoms near the surface of A with
the adjacent atoms near the surface of B, i.e., the force ~F is really the
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`

Fig.A-1: Contact force ~F exerted on
a person A by a mattress B on which
he is lying.

force exerted on the surface of A by the surface of B. Note, however,
that atoms near the surface of either object interact also with adjacent
atoms slightly further from the surface, that these atoms interact in turn
with adjacent atoms still further from the surface, and so on. Hence the
contact force ~F on one object due to the other involves indirectly the
interaction between all adjacent atoms inside the objects and depends
therefore on the separations between adjacent atoms throughout the ob-
jects. Thus the contact force ~F increases in magnitude as the objects
are “deformed” (i.e., as the separations between the adjacent atoms in
them are changed from their normal values) and has a direction opposing

their further deformation. (For example, in Fig.A-1 the force ~F exerted
on the person by the surface of the mattress increases as the mattress is
compressed and has an upward direction opposing this compression.)

To identify all the forces acting on some object, we must identify
all the other objects with which it interacts both by long-range forces
and by contact forces. The long-range forces comprise often only the
gravitational force due to the earth. The contact forces are due to all the
other objects with which the object is in contact. In the next two sections
we shall discuss the properties of these forces.

Identifying Individual Forces (Cap. 1)

A-1
A man’s hand holds a large rubber eraser and rubs it across the
surface of a notebook. What objects exert forces on the eraser?

(Answer: 104)

A-2
A child swings from a rope tied to a tree branch. Which of the
following objects exert a force on the child: the rope, the tree

branch, the earth, the child? (Answer: 107) (Suggestion: [s-6])
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SECT.

B GRAVITATIONAL FORCE NEAR THE EARTH

As discussed in text section E of Unit 406, any particle falling near
the earth under the sole influence of gravity has a downward acceleration
~g which is independent of all properties of the particle. The value of this
“gravitational acceleration” ~g is nearly constant in any region of linear size
much smaller than the radius of the earth (although it decreases slowly
with increasing distance from the earth).

According to the definition of force, a particle of massm moving with
an acceleration ~a is acted on by a force ~F = m~a. Since ~a = ~g for any
particle subject only to the gravitational interaction with the earth, any
such particle must then be acted on by a “gravitational force” ~Fg due to
the earth such that: *

~Fg = m~g (B-1)

* Here and in the following sections we shall use a single
subscript to indicate the interaction or object responsible for
the force.

The properties of this gravitational force ~Fg are then apparent from those
of the gravitational acceleration ~g.

(a) The gravitational force is a long-range force (since it acts on the particle
even when this particle is at a considerable distance from the surface
of the earth).

(b) The gravitational force is attractive (since it is downward, i.e., toward
the center of the earth).

(c) The gravitational force depends on the mass of the particle but on
none of its other properties (since g is independent of all properties of
the particle).

(d) The gravitational force is nearly constant within any region of linear
size much smaller than the radius of the earth, but decreases slowly
with increasing distance from the earth (since ~g has the corresponding
properties).

8
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The word “weight” is commonly used in accordance with this defini-
tion:

Def. Weight: The weight of an object is themagnitude
of the gravitational force on this object.

(B-2)

Thus Eq. (B-1) implies that the weight w of an object of mass m is

simply w = | ~Fg| = mg. For example, near the surface of the earth
where g = 10meter/sec2, the weight w of a newborn baby having a mass
m = 4kg ismg =(4 kg)(10meter/sec2) = 40 newton. Note that the weight
of an object, unlike its mass, depends not only on the properties of the
object, but also on the location of the object relative to the earth which
exerts the gravitational force. Thus the weight of an object depends on
g and decreases slightly with increasing height of the object above the
surface of the earth.

The gravitational force ~Fg on a particle due to the earth depends, like
all other forces, only on the relative positions of the interacting objects.
Hence the result ~Fg = m~g ought to be always true, irrespective of how the
particle moves (i.e., irrespective of whether the particle falls downward,
or moves along a trajectory like a projectile, or is lying on the floor).

The equation of motion m~a = ~F for any particle of mass m moving
under the sole influence of gravity due to the earth can thus always be
written as

m~a = m~g

Dividing both sides by m gives then

~a = ~g (B-3)

Thus we arrive at the result (already used in units 406 and 407) that the
acceleration of any particle moving under the sole influence of gravity is
always equal to ~g, irrespective of how the particle moves.

Describing the Gravitational Force (Cap. 1)

B-1
What is the gravitational force due to the earth on each of the
following objects: (a) A kitten of mass 1 kg during a jump near

the earth’s surface. (b) The same kitten at rest on the ground. (c)
A satellite of mass 5 × 104 kg in a circular orbit just above the earth’s
surface. (Answer: 101)
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Knowing About Weight and Mass

B-2
Do each of the following phrases describe the quantity weight or
the quantity mass? (a) Can be written using the unit kilogram.

(b) Can be written using the unit newton. (c) Is the magnitude of a
force. (d) Is always the same for a given object. (e) For a given object,
is different when the object is at sea level than when it is on a high
mountain. (Answer: 110)

B-3
A bar of gold is bought in Cape Town, South Africa (where the
gravitational acceleration has the magnitude g = 9.797m/s2) and

sold in Stockholm (where g is 9.818m/s2). In which city does the gold
have a larger weight? In which city has it a larger mass? (Answer: 112)

10



MISN-0-409 C-1

SECT.

C PROPERTIES OF SOME CONTACT FORCES

In Sec.A we noted that the contact force produced when an object
touches another object depends on the deformation of the objects and
tends to oppose this deformation. Let us now examine several examples
of such contact forces.

FORCE DUE TO A SPRING

Consider a particle (e.g., a golf ball) attached to the end of a spring

as shown in Fig. C-1. Then a contact force ~Fs acts on the particle due
to the end of the spring. This force depends on the deformation of the
spring, i.e., on the change of length (L−L0) of the spring, where L is the
actual length of the spring and L0 is its normal undeformed length.

The direction of ~Fs is such as to oppose the deformation of the spring.
Thus the force ~Fs = 0 if the spring has its normal undeformed length L0

(as shown in Fig. C-1a). If the spring is stretched, the force ~Fs tends
to restore the particle to the position where the spring is undeformed,
i.e., ~Fs has a direction toward the spring as shown in Fig. C-1b. If the
spring is compressed, the force ~Fs again tends to restore the particle to
the position where the spring is undeformed, i.e., ~Fs has a direction away
from the spring as shown in Fig. C-1c.

The magnitude of the force ~Fs increases as the deformation of the
spring increases, i.e., as the magnitude |L − L0| of its change of length
increases.

F
`

= 0s

F
`

s

F
`

s

(a)

(b)

(c)

L

L

L0

Fig. C-1: Force ~Fs exerted on a par-
ticle by a spring for various defor-
mations of the spring. (a) Normal
undeformed length L0 of the spring.
(b) Stretched spring. (c) Compressed
spring.
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Fig. C-2: Tension force ~Ft exerted on a particle by a
string.

Thus the magnitude of ~Fs is zero when L = L0 and increases either when
the spring is stretched so that L becomes larger than L0, or when the
spring is compressed so that L becomes smaller than L0.

The actual dependence of the magnitude of ~Fs on the deformation
of the spring depends on the particular spring under consideration. If
the deformation is sufficiently small, the magnitude of ~Fs is proportional
to |L − L0|. Then | ~Fs| = k|L − L0|, where k is a constant (the “spring
constant”) which is characteristic of the particular spring.

FORCE DUE TO A STRING

Consider a particle attached to the end of a string. The contact
force exerted on the particle by the end of the string has then a direction
along the string and away from the particle (as indicated in Fig. C-2).
A force having such a direction is called a “tension” force and can be
denoted by ~Ft. *

* A string is thus unlike a rod which has “stiffness.” For
example, a rod can exert a sideways force perpendicular to
the rod, or a force toward the particle as well as away from
the particle (i.e., a “pushing” force as well as a “pulling”
force).

The tension force ~Ft is due to the deformation of the string and is
larger for larger deformations of the string. However, a large tension force
may often be produced by a deformation which is negligibly small (i.e.,
which is only observable by sensitive methods).

FORCE DUE TO A SOLID SURFACE

Consider a particle A which is in contact with the surface of some
solid object B (e.g., a package A sliding across the surface of a table B).

12
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Fig. C-3: Force ~Fσ exerted on a par-
ticle A by the surface of an object B
with which the particle is in contact.

The contact force exerted on the particle by the solid surface can be de-
noted by ~Fσ. *

* The subscript σ (Greek letter “sigma”) indicates the solid
surface.

As usual, this contact force is due to the interaction between the atoms
of A and B near the surface and is accompanied by a deformation of the
object (as indicated in Fig. C-3 or by the mattress in Fig.A-1). How-
ever, the magnitude of the contact force may be quite large even if the
deformation is negligibly small.

The contact force ~Fσ may have various directions relative to the
surface. Hence it is convenient to express it in terms of its component
vectors perpendicular and parallel to the surface by writing

~Fσ = ~Fn + ~Ff (C-1)

Here the component force ~Fn perpendicular to the surface is commonly
called the “normal” force (since the word “normal” is often used to mean

the same as “perpendicular”). The component force ~Ff parallel to the
surface is commonly called the “frictional” force. The properties of these
two component forces can be inferred from some simple observations.

The normal force ~Fn perpendicular to the surface opposes the defor-
mation of the surface and has therefore a direction away from the surface
(if we neglect unusual situations where the surface is sticky or covered
with glue).

The frictional force ~Ff can have any direction parallel to the surface,

although its direction is always such that ~Ff resists the motion relative to
the surface of the points of the particle in contact with the surface. The
magnitude of the frictional force depends on the roughness of the surface.

If the surface is smooth (like the smooth surface of a sheet of ice), the
frictional force may be small enough to be neglected. In this case the force

13
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~Fσ exerted on the particle by the surface has a negligibly small component
vector ~Ff parallel to the surface, i.e., it is simply perpendicular to the
surface.

The magnitude Ff of the frictional force is found to increase with
increasing magnitude Fn of the normal force. Usually, the magnitudes of
these forces are merely proportional to each other, i.e., one can write

Ff = µFn (C-2)

where the constant number µ is a quantity characteristic of the particular
surfaces in contact with each other and is called the “coefficient of fric-
tion.” (The value of this coefficient is usually somewhat larger when the
particle is at rest relative to the surface than when it is moving relative
to it.)

SIMULTANEOUS ACTION OF SEVERAL FORCES

Most objects near the surface of the earth are acted on simultaneously
by the gravitational force due to the earth and by several contact forces.
These forces may then be compared in useful ways, as illustrated by this
example:

Example C-1: Measuring weight with a scale

A simple scale, such as a bathroom scale, consists essentially of a
platform supported by a spring. As the spring is compressed, its change
of length is indicated by a pointer moving around a graduated dial and
provides thus an indication of the force ~Fs exerted on an object supported
by the scale. Suppose that a woman of mass m stands on such a scale.
How then is the force ~Fs indicated by the scale related to the weight of
the woman?

The woman standing on the scale is illustrated in Fig. C-4. She is
acted on by the downward gravitational force ~Fg = m~g due to the earth

and by the force ~Fs due to the scale.

The total force on the woman is then the vector sum of these two
forces. If the acceleration of the woman is ~a, the equation of motion of
the woman is then

m~a = ~Fg + ~Fs (C-3)

Suppose that the woman and the scale are at rest relative to the
earth (which is approximately an inertial frame). Then the woman’s

14
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(a) (b)

Fig. C-4: Measurement of weight
by a scale. (a) Woman standing
on the scale. (b) Forces acting on
the woman.

acceleration ~a = 0 and Eq. (C-3) implies simply that

0 = ~Fg + ~Fs

so that

~Fs = −~Fg = −m~g (C-4)

On the other hand, suppose that the woman is standing on the
scale in an elevator moving with a vertical acceleration ~a. Then the
acceleration of the woman is also ~a. Hence Eq. (C-3) implies that

~Fs = m~a− ~Fg = m~a−m~g

or

~Fs = m(~a− ~g) (C-5)

In the first case where the woman is at rest relative to the earth so
that ~a = 0, Eq. (C-4) shows that the magnitude | ~Fs| of the force exerted
by the scale is simply equal to the weight w = mg of the woman. On the
other hand, Eq. (C-5) shows that magnitude | ~Fs| of the force indicated by
the scale is certainly not equal to the weight mg of the woman when she
is accelerated.

The weight w of an object (i.e., the magnitude of the gravitational

force ~Fg on it) is simply proportional to its mass since w = | ~Fg| = mg.
Hence the ratio w/w′ of the weights of two objects A and A′ at the
same place is merely equal to the ratio m/m′ of their masses. Thus one
can compare the masses of two objects by merely comparing their weights
(e.g., by using a scale on which the objects rest in mechanical equilibrium).
For objects of everyday size, this method of “weighing” (i.e., of comparing
gravitational forces) provides a far more convenient and precise way of
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comparing masses than the comparison of accelerations described in text
section C of Unit 408.
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Knowing About Contact Forces

C-1
(a) In Fig. C-1b, suppose that the particle is pulled to the right,

extending the spring farther. Does the magnitude of ~Fs become
larger or smaller? What is the direction of ~Fs? (b) In Fig. C-1c suppose
that the particle is pulled very slightly to the right (so that L remains

less than L0). Does the magnitude of ~Fs become larger or smaller? What

is the direction of ~Fs? (Answer: 108)

C-2
A carpenter sitting on a roof is acted on by a force ~Fσ due to the
roof surface (Fig. C-5). If ~Fσ has a magnitude of 800 newton, what

is the normal force ~Fn and the frictional force ~Ff on the carpenter due
to the surface of the roof? (Answer: 102) (Suggestion: [s-14]) (Practice:
[p-1])

Describing Individual Forces (Cap. 1)

C-3
A child slides downward along the surface of a playground slide.
(a) List the objects exerting forces on the child. (b) What al-

gebraic symbols are commonly used to represent these forces? (Choose
symbols for the two component forces due to the surface.) (c) Using a
sketch showing the slide surface, draw and label arrows indicating the
direction of each force. (Answer: 105) (Suggestion: [s-10])

C-4
A climber is held at rest by a rope while he is on an icy surface
sufficiently smooth that the frictional force is negligible. (Fig. C-

6) Choose common algebraic symbols for each force acting on the climber.
Then using a sketch showing the icy surface and the rope, draw and label
arrows indicating the direction of each force. (Answer: 106)
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Fig. C-8.

Applying the Equation of Motion (Cap. 2a)

C-5
If the playground slide described in problem C-3 is very smooth,
the forces on a sliding child of mass 35 kg are approximately those

shown in Fig. C-7. What is this child’s acceleration? (Answer: 109)
(Suggestion: [s-8])

C-6
Suppose the car, shown from the rear in Fig. C-8, travels away
from the viewer with a constant speed along a slippery, banked

road which curves towards the left. The forces on the car are then the
normal force ~Fn and the gravitational force ~Fg shown in Fig. C-8. If the
car has a mass of 1.0× 103 kg, what is its acceleration? If the car moves
along a circular path of radius 100meter, what is its speed? (Answer:
103) (Suggestion: [s-2]) More practice for this Capability: [p-2], [p-3]
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SECT.

D APPLYING THE EQUATION OF MOTION

According to our theory of motion, every problem involving a system
of particles in motion (or at rest) can be solved by applying the equation

of motion m~a = ~F to each particle. Hence this equation provides the
basis for an enormous number of practical applications.

The equation of motion m~a = ~F can also be applied directly to
any large object if it can be considered as a single particle, i.e., if its
motion can be adequately specified by a single velocity (because all its
constituent particles move with the same velocity). For example, the
equation of motion could be applied to an entire crate sliding along the
floor, but not to a rotating wheel (because all parts of such a wheel do
not move with the same velocity).

A STRATEGY FOR PROBLEM SOLVING

Whenever one is trying to apply general principles (such as the equa-
tion of motion) to solve specific problems, it is easy to make mistakes or
to get lost in a maze of details unless one proceeds in a systematic way.
Hence it is useful to follow a strategy which can guide one through the
successive steps required to achieve a solution. A helpful general strategy
applicable to any problem consists of the following major steps: (1) De-
scribing the problem in useful terms; (2) Planning by selecting applicable
principles and specifying how they are to be used; (3) Implementing the
actual solution of the problem; and (4) Checking that the problem has
been solved correctly.

The following statements describe this general strategy in greater de-
tail and indicate specifically (in square brackets) how the strategy applies
to problems involving the motion of particles.

1. Description

a. Draw a diagram illustrating the situation.

b. Summarize the known and desired information in terms of conve-
nient symbols (including unit vectors to specify directions).

[Express m~a = ~F in terms of symbols for the individual forces.]

2. Planning

19
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a. Decide on the principles to be used [m~a = ~F ].

b. Choose the system to be considered [some specific particle]

c. Express the principles in terms of known and desired information.

[Express each of the quantities in the resulting equation in terms
of symbols for known and desired information, using a diagram to
indicate directions.]

3. Implementation

a. Solve the equations to express the desired quantities in terms of
symbols for the known quantities. (It may be useful to decompose
vectors into their components along convenient directions.)

b. Find desired numerical values by replacing symbols by their known
values (including units, signs, and directions.

4. Checking

a. Check that each step is correct.

b. Check that the results are sensible (e.g., that the units are correct,
that the signs and directions make sense, that the magnitudes are
reasonable, . . . )

After the solution of the problem has been obtained, it is useful to
do two more things: (1) To examine whether the solution might not
have been obtained in different or simpler ways; and (2) to explore the
implications of the results obtained so as to extend one’s knowledge for
future purposes.

Let us now illustrate the preceding general strategy in the case of a
typical problem involving the motion of particles.

Example D-1: Car towed by a rope

A disabled car having a mass of 1.0 × 103 kilogram is towed along
a horizontal straight road by a horizontal rope attached to the rear of
a truck. The frictional force on the disabled car has a magnitude of
2× 102 newton and the maximum tension force which can be exerted by
the rope without breaking is 1.5 × 103 newton (i.e., about 300 pound).
What then is the corresponding maximum acceleration with which the
car can be towed along the road?

Description: Fig.D-1a illustrates the situation. We know: The mass
of the car is m = 1.0 × 103 kg. The tension force on the car exerted by

20



MISN-0-409 D-3

car truck

(a) (b)
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`
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??

Fig.D-1: Car towed along a road. (a) Sketch of the situa-
tion. (b) Diagram indicating the forces on the car and its
acceleration.

the rope is ~Ft = (1.5× 10
3 newton)x̂, if x̂ denotes the horizontal direction

from the towed car to the pulling automobile. The frictional force if
~Ff = −(2 × 10

2 newton)x̂, opposite to x̂ since it opposes slipping of the
wheels along the road. The acceleration ~a of the car has a direction
parallel to the straight road along which the car moves. We should like
to find the value of this acceleration.

Planning: We want to apply the equation of motion m~a = ~F to the
towed car since we are interested in its acceleration. To find the total
force ~F on the car, we need to identify the individual forces on this car.
These forces are the downward gravitational force ~Fg = m~g due to the
earth and the following contact forces due to objects touching the car:
the tension force ~Ft due to the rope and the force due to the surface of
the road. This last force consists of the normal force ~Fn perpendicular
to the road and of the frictional force ~Ff . Thus the equation of motion

m~a = ~F becomes

m~a = ~Fg + ~Ft + ~Fn + ~Ff . (D-1)

Figure D-1b indicates the directions of all these forces and the possible
directions of the acceleration ~a.

Implementation: To solve the vector Eq. (D-1), we note that the
equality of the vectors on both sides of this equation implies the equality
of the corresponding component vectors parallel to any direction. The
equality of the horizontal component vectors in Eq. (D-1) then implies
that the horizontal component vector of the acceleration (i.e., the
horizontal acceleration a itself) is related to the sum of the horizontal
forces so that

m~a = ~Ft + ~Ff (D-2)
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Similarly, the equality of the vertical component vectors in Eq. (D-1)
implies that the vertical component vector of the acceleration (which is 0
since ~a is horizontal) is related to the sum of the vertical forces so that

0 = ~Fg + ~Fn (D-3)

We can now solve for the desired acceleration by using Eq. (D-2). Thus

~a =
~Ft + ~Ff
m

For the maximum permissible tension force of 1.5× 103 newton, we then
find the following corresponding numerical value of the acceleration

~a =
(1.5× 103 newton)x̂+ (−2× 102 newton)x̂

1.0× 103 kg

or

~a =
(1.3× 103 newton)x̂

1.0× 103 kg
= (1.3meter/sec2)x̂

Checking: The units are correctly those of an acceleration. As ex-
pected, the direction of the acceleration ~a of the car is along the force ~Ft
pulling the car and the magnitude of ~a seems reasonable. Furthermore,
the Eq. (D-3) also makes sense since it implies that ~Fn = −~Fg so that
the upward normal force on the car due to the road merely balances the
downward gravitational force due to the earth.

Now: Go to tutorial section D.

Applying the Equation of Motion (Cap. 2b)

Demonstrating this capability includes using the equation of motion to
produce systematic problem solutions which are clear to other people.

The term “known quantities” includes: numbers, all quantities specified
in a problem, and symbols with known values, such as g and π.

D-1
The driver of a car traveling east applies his brakes. The hor-
izontal road surface then exerts on the car a frictional force

~Ff = 3.0 × 10
3 newton west. If the car has a mass m = 1.5 × 103 kg,

what is the acceleration ~a of the car, and what is the normal force ~Fn
exerted on the car by the road surface? (First express these quantities in
terms of symbols for known quantities. Then find their values.) (Answer:
111) (Suggestion: [s-5])
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x̂

Fig.D-2.

D-2
The horizontal surface of a truck bed supports a crate of mass
1.5 × 102 kg. As the truck drives off, the truck and crate move

with an acceleration ~a = 1.2m/s2x̂, where x̂ is a horizontal unit vector
directed along the road. What are the frictional and normal forces which
the surface of the truck bed exerts on the crate? (Express your answers
by using x̂ and the upward unit vector ŷ). (Answer: 115)

D-3
The mass of a lamp suspended by a cord in an elevator cannot
exceed a maximum safe value without danger of breaking the

cord as the elevator accelerates. To determine this maximum safe mass
m, suppose that while slowing down at the end of a descending trip, the
elevator and lamp have their maximum upward acceleration of magnitude
~a = 1.0m/s2, and that the cord exerts an upward force of magnitude ~Ft =
22newton, the largest force which the cord can exert without breaking.
(a) Write the equation of motion for the lamp using the symbols provided.
(b) Express m in terms of symbols for known quantities. (c) What is the
value of m? (Answer: 119) (Suggestion: [s-15])

D-4
When the elevator and lamp described in problem D-3 move up-
ward with constant speed, what is the value of the tension force

exerted on the lamp by the cord? (Answer: 122) (Suggestion: [s-1])

D-5
A man with a neck injury lies with his 4.0 kg head supported at
rest on the horizontal surface of a bed. The head is also acted on

by a horizontal tension force, of magnitude 60 newton, due to a chin strap
attached to a cord and weight (Fig.D-2). (a) If the bed surface exerts a

frictional force ~Ff = 7.0 newton x̂ on the head, what is the force ~Fv on
the head due to the cervical vertebrae of the neck? (b) Review: What
is the force exerted by the head on the injured neck? (c) If the patient

lifts his head slightly so that ~Ff is zero, what then is the value of ~Fv?

(To avoid such a change in ~Fv, a patient’s head is often placed on a small

wheeled platform so that ~Ff is always negligible.) (Answer: 117) More
practice for this Capability: [p-4], [p-5]
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SECT.

E COMPONENT EQUATIONS OF MOTION

As illustrated by the example in the preceding section, the equation of
motion m~a = ~F implies a corresponding equation relating the component
vectors of the acceleration ~a and of the total force ~F parallel to any
direction. Hence problems of motion can often be greatly simplified by
dealing with component vectors parallel to some convenient directions.
For example, if a particle moves along some specified path, its motion can
usually be discussed most readily by considering the component vectors
of the forces parallel to this path.

Example E-1: Sled sliding down a hill

A sled is sliding down a snow-covered hill which makes an angle with
the vertical direction of the gravitational force. What is the acceleration
of the sled along the hill if the frictional force on the sled is negligibly
small?

- Description
Fig. E-1a illustrates the situation where we know the angle θ be-

tween the downhill direction x̂ and the vertically downward direction. We
want to find the acceleration ~a of the sled along the hill.

- Planning
We can apply the equation of motion m~a = ~F to the sled. The

total force ~F on the sled consists of the gravitational force ~Fg due to the

earth and of the normal force ~Fn due to the surface of the hill (since the

frictional force ~Ff due to the surface is negligible). If the sled has a mass
m, its equation of motion is then

m~a = ~Fg + ~Fn (E-1)

The directions of these forces are indicated in Fig. E-1b where the gravi-
tational force ~Fg = m~g is vertically downward and the normal force ~Fn is
perpendicular to the surface of the hill.

- Implementation
Since the sled moves along the hill, we use the equation of motion

Eq. (E-1) to relate component vectors parallel to the downhill direction
x̂. The component vector of the acceleration ~a parallel to x̂ is simply
equal to a since this acceleration is itself parallel to x̂. The component
vector of the gravitational force ~Fg parallel to x̂ can be found from the
vector diagram in Fig. E-1c and is (Fg cos θ)x̂. The component vector
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Fig. E-1: Sled sliding down a hill. (a) Sketch of the situation.
(b) Diagram indicating the forces on the sled and its accel-
eration. (c) Component vectors of the gravitational force
relative to x̂.

of the normal force ~Fn parallel to x̂ is zero since ~Fn is perpendicular to
x̂. Hence Eq. (E-1) implies for the component vectors parallel to x̂ the
equality

m~a = (Fg cos θ)x̂+ 0 = (mg cos θ)x̂

so that

~a = g cos θx̂ (E-2)

- Checking
The result Eq. (E-2) makes sense since it implies that the accelera-

tion of the sled is downhill and has a magnitude which is larger when the
gravitational force is more nearly parallel to the surface of the hill (i.e.,
when θ is smaller). In the special case where the surface is horizontal so
that θ = 90◦, gravitational force has no component parallel to the surface.
Then ~a = 0, as expected since a sled moving along a frictionless horizontal
surface would move with constant velocity. Conversely, in the special case
where θ = 0◦, the gravitational force is entirely parallel to the surface.
Then ~a = ~g, as expected since the sled would then simply fall vertically
downward under the sole influence of gravity.

- Discussion
According to Eq. (E-2), the acceleration ~a of the sled is independent

of its mass m. This result is again a consequence of the fact that the
gravitational force ~Fg is simply proportional to the mass m. Note that

the component vector ~Fg‖ of the gravitational force parallel to the surface
of the hill makes the sled move downhill with constant acceleration.
The component vector ~Fg⊥ of the gravitational force perpendicular to
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the surface is balanced by the opposing normal force ~Fn due to the
surface (so that ~Fg⊥ + ~Fn = 0) to assure that the sled does not move
perpendicularly to the surface of the hill. *

* Fig. E-1a shows that θ+α = 90◦ if α denotes the angle made
by the slope of the hill with the horizontal. Thus θ = 90◦−α
and the result Eq. (E-2) can also be written as ~a = g sinαx̂.

Illustration

E-1
Suppose the hill described in Example E-1 makes an angle α =
10◦ with the horizontal direction. What is the angle θ between the

sled’s path and the gravitational force? What is the sled’s acceleration?
What is the sled’s velocity 2.0 sec after starting from rest? (Answer: 113)

Now: Go to tutorial section E.

Relating Motion to Component Forces (Cap. 3)

E-2
Consider again the sled described in Example E-1. Fig. E-2 shows
two possible paths for the sled, one roughly along the gravitational

force (Fig. E-2a) and one roughly perpendicular to the gravitational force
(Fig. E-2b). For which path is the sled’s acceleration larger? (Answer:
121)

E-3
A boy gives his friend a ride in a wagon which has well-oiled
wheels and thus moves with negligible friction along the horizontal

sidewalk (Fig. E-3). The boy first pulls the wagon, exerting on it a force
~F1, and then pushes the wagon, exerting on it a force ~F2. If ~F1 and ~F2 have
equal magnitudes, for which force has the wagon a larger acceleration?
(Answer: 124)
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SECT.

F RELATING FORCES ON SEVERAL INTERACTING
PARTICLES

Consider a system consisting of several interacting particles, e.g.,
particles joined together so that they are in contact. Then one can apply
the equation of motion m~a = ~F successively to each of these particles.
Furthermore, if the force ~F1,2 on some particle 1 due to some other particle

2 is not known, it can be found from the force ~F2,1 on particle 2 due to

particle 1 since the mutual forces are reciprocally related so that ~F1,2 =

−~F2,1. The following simple example illustrates how these principles can
be systematically applied to such a system of interacting particles.

Example F-1: Force exerted on a rope supporting an object

During a mountain rescue operation, a person (of mass mp) is sus-
pended at rest from a long rope (of mass mr) fastened to a hook anchored
in a rock. What then is the force which must be exerted on the rope by
the supporting hook?

Description: The situation is illustrated in Fig. F-1a. We know that
gravitational forces act on both the person and the rope. We want to find
the force ~Fr,h exerted on the rope by the hook.

Planning: We may first consider the rope and then the person. Since
each of these objects remains suspended at rest, each has zero acceleration.
Hence the equation of motion implies that the total force on each must
be zero.

Consider first the rope. As indicated in Fig. F-1b, the forces acting
on the rope are the downward gravitational force mr~g on the rope due to
the earth, the force ~Fr,h on the rope due to the hook, and the force ~Fr,p
on the rope due to the person. Hence the condition that the total force
on the rope is zero implies that

mr~g + ~Fr,h + ~Fr,p = 0 (F-1)

Consider next the person. As indicated in Fig. F-1c, the forces acting
on the person are the downward gravitational force mp~g on the person

due to the earth and the force ~Fp,r on the person due to the rope. Hence
the condition that the total force on the person is zero implies that

mp~g + ~Fp,r = 0 (F-2)
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Fig. F-1: Person suspended from a rope fastened to a hook.
(a) Sketch of the situation. (b) Diagram showing forces on
the rope. (c) Diagram showing forces on the person. (d)
Diagram showing forces on the combined object consisting
of the rope and person.

In Eq. (F-1) the unknown force ~Fr,p on the rope due to the person is

related to the force ~Fp,r on the person due to the rope by the reciprocal
relation

~Fr,p = −~Fp,r (F-3)

Implementation: To find the force ~Fr,h from Eq. (F-1), we need first

to use our other relations to find the force ~Fr,p. Thus Eq. (F-2) implies

that ~Fp,r = −mp~g so that Eq. (F-3) yields the result

~Fr,p = −~Fp,r = mp~g (F-4)

Hence Eq. (F-1) implies that

~Fr,h = −mr~g − ~Fr,p = −mr~g −mp~g

or

~Fr,h = −(mr +mp)~g (F-5)

Checking: The result Eq. (F-5) makes sense since it claims that the
force on the rope due to the hook is upward (i.e., opposite to ~g) and has
a magnitude equal to the sum of the weights of the rope and the person.

Discussion: We could also discuss the preceding problem by consid-
ering the rope plus the person as a single combined object having a mass
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M . As indicated in Fig. F-1d, the forces on this combined object would
then be the downward gravitational force M~g due to the earth and the
force ~Fr,h on the rope due to the hook. The condition that the total force
on this combined object is zero implies then that

M~g + ~Fr,h = 0 or ~Fr,h = −M~g (F-6)

By comparing this result with the previous result Eq. (F-5), we see that
M must have the value M = mr +mp. In other words, the mass of the
combined object consisting of the rope and the person must be equal to
the sum of the masses of these objects. This is a very plausible result
consistent with familiar observations.

TENSION FORCES PRODUCED BY LIGHT STRINGS

If the rope in the preceding example has a negligibly small mass it
is called a “light” rope or string. Then mr = 0 so that Eq. (F-1) implies

that ~Fr,h + ~Fr,p = 0 or ~Fr,h = −~Fr,p. Hence the tension forces exerted
on the two ends of any light string (and thus also by the two ends of any
such string) are always of equal magnitude. Thus a light string merely
“transmits” the same force from one of its ends to the other; for example,
the force exerted on the rope by the hook is simply the same as the
force exerted on the person by the rope. The same statement is also
true even if the light string is accelerated (since m~a = ~F for the string is
still zero because its mass m = 0) and even if the string passes around a
frictionless pulley (since the forces on opposite ends of any small portion
of the string around the pulley must have the same magnitudes). The
preceding comments can be summarized by this conclusion:

The magnitudes of the tension forces exerted by any
two ends of a light string are equal.

(F-7)

Knowing About Tension Forces

F-1
The rope and pulley arrangement in Fig. F-2a is a simple “block
and tackle,” a device for lifting a heavy object suspended from

the pulley. To see how it works, let us find the weight W of a box which
can be supported (or lifted with constant speed) by a hand exerting an

upward force of magnitude ~Fr,h = 100 newton on the rope. The pulley is
frictionless and both pulley and rope have negligible mass. (a) What are
the magnitudes of the tension forces exerted by the rope on the hand and
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on the supporting beam? What is the magnitude of the force on the rope
due to the beam? (b) Consider as a particle the system comprising the
box, rope, and pulley. What are the individual forces on this particle?
Use the equation of motion to expressW in terms of ~Fr,h and then to find
a value for W . (c) For comparison, what is the weight W ′ of a box which
can be directly supported at rest by a hand exerting an upward force of
magnitude 100 newton (Fig. F-2b)? (Answer: 114) ([s-4], [p-6])

Applying the Equation of Motion to Several Objects (Cap. 4)

F-2
A small tractor at an airport pulls a train of two baggage carts
so that all three objects have an acceleration of 1.5m/s2 toward

the right. The loaded carts each have a mass of 300 kg and move with
negligible friction. The tractor has a mass of 1,000 kg. (a) Apply the
equation of motion to the last baggage cart (cart 2) in order to find the
force on this cart due to the first cart (cart 1). (b) What is the value of
the force on cart 1 due to cart 2? (c) Apply the equation of motion to
cart 1 in order to find the force on this cart due to the tractor. (Answer:
118) (Suggestion: [s-13])

F-3
Young women often sustain back injuries while lifting children.
To estimate the force causing such injury, consider a woman’s

upper body as a particle of mass 30 kg. The spine exerts on this body an
upward force ~Fb,s (Fig. F-3a). As the woman lifts a child, suppose that
both her upper body and the child move with an upward acceleration
of magnitude 1m/s2. If the child has a mass of 20 kg (i.e., a weight
of 44 pound), what is the force on the child due to the woman’s upper

body? What is the force ~Fb,s? If this upward force due to the spine is
directed roughly perpendicular to the spine (Fig. F-3b), the spine may be
injured by excessive bending, or by strain of the muscles which prevent
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such bending. Injury is made less likely if the child is lifted as in Fig. F-
3a, so that ~Fb,s is more nearly along the spine. (Answer: 120) (Practice:
[p-7])
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SECT.

G SUMMARY

DEFINITIONS

weight; Def. (B-2)

IMPORTANT RESULTS

Gravitational force on a particle due to the earth: Eq. (B-1)

~Fg = m~g

Contact forces: (Sec. C)

Depend on deformation of touching objects and tend to oppose this
deformation.

(a) Force due to a spring: increases with magnitude of deformation
and opposes this deformation.

(b) Tension force due to a string: along string away from particle on
which it acts.

(c) Force due to a solid surface: ~Fσ = ~Fn+ ~Ff , where normal force ~Fn
is away from surface and frictional force ~Ff is parallel to surface.

Tension forces produced by a light string: Rule (F-7)

The magnitudes of the tension forces exerted by any two ends are
equal.

NEW CAPABILITIES

You should have acquired the ability to :

(1) Identify and describe the individual forces acting on a particle
(Sects. A, B, and C, [p-1]).

(2) Systematically apply the equation of motion to find an object’s mass,
acceleration, or one of the forces acting on it when:

(a) Individual forces are specified by arrow on a grid (Sec. C, [p-2],
[p-3])

(b) The acceleration and individual forces are all parallel or perpen-
dicular to a given direction. (Sec.D and F, [p-4], [p-5])

(3) Relate qualitatively the motion of a particle along a straight path to
the forces acting on it (Sec. E).

(4) Use the reciprocal relation between mutual forces to apply the equa-
tion of motion successively to particles moving together with the same
acceleration. (Sec. F, [p-7])
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Applying the Equation of Motion (Cap. 2)

G-1
In the process of walking, a 70 kg man presses (with his feet)
downward and backward on the sidewalk surface. Thus he exerts

on the sidewalk the force shown in Fig.G-1. Draw an arrow representing
the force on the man due to the sidewalk. What is the man’s acceleration?
(Answer: 116) (Suggestion: [s-3])

G-2
While ringing a doorbell in a hall, a delivery man supports a
package by pushing it horizontally against a wall so that the

package remains at rest (Fig.G-2). He exerts on the package a horizontal
force of magnitude equal to twice the weight of the package. If this weight
is 50 newton, what are the frictional and normal forces exerted on the
package by the vertical surface of the wall? (Answer: 127) (Suggestion:
[s-7])
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SECT.

H PROBLEMS

Relating Forces to Velocity

H-1
(This problem requires using the equation of motion with the
relations between acceleration and velocity discussed in Unit 406.)

A car’s motion along a flat road surface depends on the force on the car
due to the road surface. (This is also true for a man walking, as in
problem G-1.) (a) Write an expression for the car’s acceleration ~a in

terms of its mass m and the frictional force ~Ff on the car due to the
road surface. (b) If the car’s tires are in good condition, and the road is

dry, ~Ff has a maximum magnitude of about 0.60 times the car’s weight.
(This is the maximum frictional force possible without the tires slipping or

skidding.) Use this value for ~Ff to find values for these quantities: (i) the
maximum magnitude for the car’s acceleration; (ii) the minimum time and
the minimum distance required for the car to come to rest after traveling
with an initial speed of 24m/s (about 55mile/hour); (iii) the maximum
constant speed with which the car can travel around a flat (unbanked)
curve of radius 150meter. (c) If the road surface is icy, the maximum

possible magnitude of ~Ff is only about 0.067 times the car’s weight. Under
these driving conditions, what are the values of the quantities listed in
part (b)? (Answer: 125) ([s-11], [p-8])

H-2
A traction device: The device shown in Fig.H-1 exerts a force
on the foot, thus keeping the ends of a broken leg bone aligned.

To estimate this force, suppose that the device consists of a light string
running over light frictionless pulleys. Consider as a particle the pulley
and rope segments inside the rectangle shown in Fig. H-1. What is the
magnitude of the tension force exerted by the string on the 5.0 kg metal
“weight?” What is the sum of the forces exerted on the “particle” by
the two string segments at A and B? What is the force exerted by this
“particle” on the foot? (Answer: 128) (Suggestion: [s-9])

H-3
∗Pushing a wheelchair up a ramp: The orderly shown in Fig.H-2
exerts on a wheelchair the force ~FO parallel to the ramp. The

chair moves with negligible friction and with a constant velocity. (a)

Express ~FO in terms of known quantities, the mass m of the wheelchair
and patient, and the angle θ between the ramp and the vertical direction.
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(b) Does your result agree with these statements: Pushing a fat patient
(for whom m is larger) requires a larger force than pushing a thin patient.
Pushing a given patient up a steep ramp (for which θ is small) requires a
larger force than pushing him up a less steep ramp. (c) What is the force
~FO if the orderly pushes the chair with constant velocity down the ramp?
(Answer: 123) (Suggestion: [s-12])

H-4
Forces causing a broken ankle: A hiker stepping off a large boul-
der lands on his left foot with the knee rigid (Fig. H-3). To esti-

mate forces which commonly cause broken ankles, consider the following
objects as particles. The particle T , of mass 55 kg, consists of the hiker’s
torso, head, arms and right leg. The particle L, of mass 10 kg, consists of
the supporting left leg. As the left foot strikes the ground, the downward
motion of these particles is stopped so that they both have approximately
the same upward acceleration of magnitude 5.0 × 102m/s2. What is the
force on the torso T due to its interaction with the left leg at the hip
joint? What is the force on the left leg L due to its interaction with the
foot at the ankle joint? (b) For comparison, what is the force on the left
leg L due to the ankle joint if the hiker simply stands at rest on his left
leg? (c) Compare these forces to explain why a broken ankle is a common
hiker’s injury, while hip injuries are more unusual. (Answer: 126)

Note: Tutorial section H contains further biological applications of the
equation of motion.
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TUTORIAL FOR D

SYSTEMATICALLY APPLYING THE EQUATION OF MOTION

d-1 USING THE STRATEGY FOR PROBLEM SOLVING: The capa-
bilities of this unit include being able to systematically apply the equation
of motion. (Cap. 2) This means applying the equation of motion accord-
ing to some plan or strategy so that your problem solutions are clear and
easy to check (both for you and for another person).

We recommend the strategy described in text section D. Try out this
strategy as you work this problem:

An elevator, fully loaded with people, has a mass of 2.0× 103 kg, and its
maximum acceleration has a magnitude of 3.0m/s2. The cable supporting
the elevator can exert a force of magnitude 3.5 × 104 newton without
breaking. What is the force exerted by the cable on the cab as the cab
moves upward with its maximum acceleration? Is this force large enough
to break the cable?

(1) Description

(a) Draw a diagram illustrating the situation.

(b) Summarize the known and desired information in terms of conve-
nient symbols (including unit vectors to specify directions).

-

(2) Planning

(a) Decide on the principles to be used [m~a = ~F ].

(b) Choose the system to be considered [some specific particle].

-
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(c) Express the principles in terms of known and desired information.

(1’) Express m~a = ~F in terms of symbols for individual forces.

-

(2’) Express the resulting equation in terms of symbols for known
and desired quantities, using a diagram to indicate directions of
all vector quantities.

-

(3) Implementation

(a) Solve the equations, expressing the desired quantities in terms of
symbols for known quantities.

-

(b) Find the desired numerical values by replacing symbols by their
known values (including units, signs, and directions).

-

(4) Checking

(a) Check that each step is correct.

(b) Check that the results are sensible.

Is the unit correctly a unit of force?

-

Is the magnitude reasonable when compared with the maximum
force the cable can exert?
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Is the direction correctly upward along the cable?

Now answer the final question in the problem.

Is this force large enough to break the cable?

-

(Answer: 18) Now: Return to text section D, and systematically solve
problems D-1 through D-4.
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TUTORIAL FOR E

RELATING MOTION ALONG A STRAIGHT PATH

e-1 PREDICTING MOTION ALONG A STRAIGHT PATH: The dis-
cussion of the sled’s motion in text section E illustrates a general means of
predicting the motion of any particle which moves along a known straight
path. Such motion depends only on component forces parallel to this
path.

For example, consider a nurse pushing a wheeled stretcher which moves
with negligible friction along a straight flat hallway as shown in the fol-
lowing drawing (1).

(a) List the objects which exert forces on this stretcher. Place a check
beside each object which exerts a force with a nonzero component
parallel to the stretcher’s horizontal path.

-

F
`

1

F
`

2

F
`

3

(1) (2) (3)

30°
30°

The nurse can push or pull the stretcher in any of the ways shown in the
preceding drawings. The corresponding forces which she can exert on the
stretcher are indicated by arrows below the drawings.

(b) If all three possible forces have the same magnitude, for which of these
forces is the component force along the path of largest magnitude? For
which forces is this component force of smallest magnitude?

- Largest: ~F1, ~F2, ~F3

- Smallest: ~F1, ~F2, ~F3
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(c) Which of the methods shown for moving the stretcher will result in the
largest acceleration of the stretcher?

- (1) (2) (3)

(Answer: 3) (Suggestion: Suggestion [s-14] reviews the process for finding
component vectors.)) Now: Go to text problem E-2.
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TUTORIAL FOR H

TWO BIOLOGICAL APPLICATIONS OF THE EQUATION OF
MOTION

h-1 FORCES CAUSING WEARING OF BODY JOINTS: Recent
work suggests that wear and degeneration of body joints (e.g., osteoarthri-
tis) may be due to large forces exerted by these joints. One might suppose
that the magnitude of the force exerted by a joint would be about equal
to the weight of the body part it supports. (For example, the magnitude
Fs of the force exerted by a shoulder joint would be about equal to the
weight of the arm.) In fact, as the following problem illustrates, Fs can
be much larger.

The following drawing shows a simple model of a shoulder joint with the
arm horizontally outstretched. We approximate the force ~Fs exerted by
the shoulder on the arm by assuming that it is directed along the arm,
in this case horizontally. In addition, the arm is acted on by a force ~Fd
due to the deltoid muscle, and by the downward gravitational force ~Fg.

ŷ

x̂

deltoid muscle F
`

d

F
`

g

F
`

sf

To find a value for Fs we shall apply the equation of motion to the arm,
and then use the corresponding component equations to calculate Fs.

Write the equation of motion for the arm in terms of symbols for the
individual forces on the arm. Then write the corresponding component
equations parallel to x̂ and ŷ.

-

Now: Check answer 16 and continue.
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A typical man’s arm has a mass of 3.9 kg and X-ray measurements of the
deltoid muscles indicate that φ = 15◦.

What is the magnitude Fd of the force exerted by the deltoid muscle?

- Fd =

What is the magnitude Fs of the force exerted by the shoulder joint
on the extended arm?

- Fs =

Compare Fs with the weight Fg of the arm by writing Fs as a number
times Fg.

- Fs = ( )Fg

(Answer: 2)

h-2 FORCES INVOLVED IN RUNNING: When an animal runs with
constant velocity, its body and head move with a nearly zero acceleration.
Therefore the major effort in running is the exertion of muscle forces which
bring each leg to rest as it strikes the ground, and then accelerate each
leg as it leaves the ground so that it moves forward “catching up” with
the body. The following very approximate application of the equation of
motion suggests how an animal’s speed is related to its size and shape.

At any instant of time, the total force on a leg is equal to the product ma
of the leg’s mass and acceleration. While the leg moves above the ground,
this acceleration is approximately horizontal, and we can consider only
the component equation of motion, m~a = ~Fm, where ~Fm is the horizontal
component force on the leg due to the animal’s muscles.

To approximate the acceleration ~a, suppose that as the leg moves forward
from rest, it has a constant acceleration until it reaches the speed V of the
animal’s body. Thus the change in the leg’s velocity, ∆~v = ~V − 0, occurs
during an approximate time of (1/2)T where T is the time required for
one stride. (During the second half of this stride, the leg moves forward,
past the body, and slows down in preparation for striking the ground.)
Thus a = ∆v/∆t = V/(T/2) = 2V/T . The animal’s speed V is also
related to the time T of one stride by V = d/T , where d is the length of
one stride.

Combine the relations a = 2V/T, V = d/T , and Fm = ma in order to
write an expression for an animal’s speed V in terms of the magnitude
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Fm of its component muscle force, the length d of its stride, and the
mass m of its legs. (b) Animals such as deer, ostriches, racehorses, and
greyhounds are all known for their large running speeds. Use your answer
to part (a) to explain qualitatively how anatomical features common to
all of these animals contribute to their running speeds. (Answer: 13)

44



MISN-0-409 Additional Problems Supplement pp-1

PRACTICE PROBLEMS

p-1 FINDING COMPONENT SURFACE FORCES (CAP. 1): The

snow surface exerts on a skier a force ~Fσ which has a magnitude of
800 newton, and the direction shown in this drawing:

F
`

s

75°

ŷ

x̂

Find the frictional force ~Ff and the normal force ~Fn on the skier due
to the snow surface. (Answer: 1) Now: Return to text problem C-2 and
make sure your work is correct.

p-2 APPLYING THE EQUATION OF MOTION (CAP. 2A): While

swinging on a rope, a child of mass 30 kg is acted on by the forces ~Ft due
to the rope and ~Fg due to the earth shown in this diagram:

100 newton

ŷ

x̂
F
`

t

F
`

g

What is the child’s acceleration at the instant shown? Check your answer
by comparing the directions of the child’s acceleration and path. Recall
from Unit 406 that the acceleration of a particle moving along a curved
path is directed towards the inside of the path. (Answer: 11) (Suggestion:
Review text problems C-5 and C-6.)
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p-3 APPLYING THE EQUATION OF MOTION (CAP. 2A): A car

runs out of gas while traveling to the right on a level road. Until it
comes to rest, the car is acted on by the gravitational force ~Fg due to

the earth, and by the frictional and normal forces ~Ff and ~Fn due to the
road surface. These forces have the values shown in this diagram:

1000 newton

F
`

n

F
`

f

F
`

g

If the car’s mass is 1.0 × 103 kilogram, what is its acceleration ~a? If the
car’s initial velocity was 20m/s towards the right, and its acceleration
remains constant, what time interval is required for the car to come to
rest? (Answer: 8) (Suggestion: Review text problems C-5 and C-6.)

p-4 APPLYING THE EQUATION OF MOTION (CAP. 2B): An elas-

tic safety rope exerts on a falling climber a tension force of maximum
magnitude 1.1× 104 newton, independent of the height of the fall. (Such
an elastic rope is less likely to injure a climber by jerking him with a large
tension force at the end of a long fall.) If a climber has a mass of 100 kg,
what is his acceleration ~a at the end of a vertical fall when he is acted
on by the maximum upward tension force due to the rope? (Answer: 10)
(Suggestion: Review text problems D-1 through D-5.))

p-5 APPLYING THE EQUATION OF MOTION (CAP. 2B): A man

repairs a broken trailer hitch by fastening the trailer to his car with a
horizontal length of chain with a “breaking strength” of 8.0×103 newton.
(This breaking strength is magnitude of the maximum tension force the
chain can exert without breaking.) The man plans to tow the trailer care-
fully, driving on flat horizontal roads with an acceleration of maximum
magnitude 1.0m/s2. If the frictional force on the trailer when in motion
has a magnitude of 1.0 × 103 newton, what is the maximum mass of the
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loaded trailer which can be towed without breaking the chain? In other
words, what is the mass of a loaded trailer which moves with an accelera-
tion of magnitude 1.0m/s2 when acted on by a tension force of magnitude
8.0 × 103 newton? (Answer: 7) (Suggestion: Review text problems D-1
through D-5.)

p-6 KNOWING ABOUT TENSION FORCES: Commonly a block

and tackle consists of a light rope and light frictionless pulleys assembled
as in the following drawing. Then pulling downward on the rope lifts the
box suspended from the lower pulley.

A B

Suppose the hand shown exerts a force of magnitude 100 newton on the
rope, thus supporting the box (or lifting it with a constant velocity). (a)
What is the magnitude of the tension force exerted on the hand by the
rope? (b) Consider as a particle the system comprising the box, lower
pulley, and lower section of the rope between A and B. What is the
tension force exerted on this particle by the rope extending upward from
A? What is the tension force on this particle due to the rope extending
upward from B? What is the weight W of the box? (c) If this block and
tackle is used to lift a box having a weight of 500 newton, what is the
magnitude of the force which the hand exerts on the rope? (Answer: 12)
(Suggestion: Review text problem F-1.)

p-7 APPLYING THE EQUATION OF MOTION TO SEVERAL OB-

JECTS (CAP. 4): (a) While traveling along a flat level road, a driver
applies his brakes so as to stop his car as rapidly as possible. His car,
which has a mass mc, is then acted on by a frictional force ~Ff due to the
road surface. What is the car’s acceleration ~a?
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Now suppose that the car pulls a small trailer of mass mT along the
same road with the same speed. If the trailer has no brakes of its own,
the frictional force on the trailer is negligible during the time the car’s
brakes are applied. However, both the car and trailer move with the same
acceleration ~a ′, and the car is acted on by the same frictional force ~Ff
described in part (a). (b) Write the equations of motion both for the car
and for the trailer. Express the acceleration ~a ′ in terms of the frictional
force ~Ff on the car and the masses of the car and trailer. (c) By comparing
the accelerations ~a and ~a ′, briefly explain why it requires more time to
stop the car with the trailer than to stop the car alone. (Answer: 14)
(Suggestion: Review text problems F-2 and F-3.)

A More Difficult Practice Problem (Text Section H)

p-8 RELATING FORCES TO VELOCITY: The car shown in the

following drawing travels away from the viewer along a road curving to
the right. The car has a mass of 1.5× 103 kg, and moves with a constant
speed of 20m/s along the circular road section which has a radius of

200meter. (a) Express the force ~Fσ due to the road surface as a sum of
two vectors with known values. Then use the following grid to construct
an arrow representing ~Fσ.

1000 newton

ŷ

x̂

(b) To increase road safety, curves are often “banked,” that is the road is
inclined (as in the preceding drawing) so that its surface is approximately

perpendicular to the force ~Fσ.
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ŷ

F
`

s

x̂

q

q

road

surface

Use your arrow representing ~Fσ to find the angle θ between the banked
road surface and the horizontal direction. [Such a banked curve is safer
than a flat curve, because the acceleration of a car is produced by a normal
surface force rather than by a frictional force. When the road is wet, the
frictional force may be very small (see text problem H-1), but the normal
force does not depend on road conditions.] (Answer: 17)
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SUGGESTIONS

s-1 (Text problem D-4): Write the equation of motion for the lamp in
terms of the individual forces acting on it. Remember that the acceler-
ation is zero for a particle moving with constant speed along a straight
path.

s-2 (Text problem C-6): Remember that if a particle moves with con-
stant speed v along a circular path of radius r, then the particle’s accel-
eration ~a is v2/r directed from the particle towards the circle’s center.

s-3 (Text problem G-1): The force on the man due to the sidewalk
has the same magnitude but the opposite direction as the force on the
sidewalk due to the man. The total force on the man is the vector sum
of the forces on him due to all objects with which he interacts. Here he
interacts with the sidewalk and with the earth (through the gravitational
force).

s-4 (Text problem F-1): Part (a): According to the reciprocal relation
between mutual forces, the force on the rope due to the hand is equal in
magnitude (and opposite in direction) to the force on the hand due to the
rope. The ends of a light rope exert tension forces of the same magnitude.

Part (b): The particle described in Problem F-1 has an acceleration of
zero. Thus its equation of motion is:

m~0 = ~Fr,h + ~Fr,b + ~Fg

where ~Fr,b is the upward force on the rope due to the beam, and ~Fg is
the gravitational force of magnitude W .

s-5 (Text problem D-1): Application of the problem-solving strategy
from text section D should include the following results.
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Planning:

The equation of motion for the car is m~a = ~Fn+ ~Ff + ~Fg, where ~Fg = m~g
is the downward gravitational force on the car.

Implementation:

The equation of motion implies these relations between component vectors
parallel and perpendicular to the road:

m~a = ~Ff , ~0 = ~Fn + ~Fg

s-6 (Text problem A-2): An object exerts a force on the child only
if it is in direct contact with the child (i.e., if it touches the child), or
if it exerts a long range force on the child (such as the gravitational
force due to the earth). There is no force on an object (considered as a
particle) due to itself, because when a particle is isolated, it moves with
a constant velocity, and so the total force on the particle (due to itself) is
~F = m~a = ~0.

The tree branch does affect the child’s motion. (If the branch weren’t
there, the child would fall.) However, the branch does not interact directly
with the child, because it exerts neither a contact nor a long range force
on the child.

s-7 (Text problem G-2): The equation of motion for the package is:

m~a = ~Fg + ~Fm + ~Ff + ~Fn where m and ~a are the package’s mass and
acceleration and the four forces on the package are the gravitational force,
the force due to the man, and the frictional and normal forces due to the
wall.

Draw labeled arrows indicating the directions of the five vector quantities
appearing in the equation of motion.
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-

Because m~a = ~0, the sum of the horizontal forces equals zero, and the
sum of the vertical forces equals zero.

(Answer: 15) Now: Return to text problem G-2.

s-8 (Text problem C-5):

Use the following grid to construct an arrow representing the total
force ~F = ~Fn + ~Fg on the child.

-

F
`

n

F
`

g

50 newton

Direction of

slide surface

Express ~F as a magnitude with a direction relative to the slide surface.
(Get the slide direction from the graph.)

- ~F =

Use the equation of motion to find the child’s acceleration ~a.

- ~a =

(Answer: 6) Now: Go to practice problem [p-2].
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s-9 (Text problem H-2): All tension forces exerted by a single light
string have the same magnitude. Thus here these forces have the magni-
tude 50 newton, the magnitude of the tension force of the string on the
“weight” it supports.

Tension forces are directed from the particle on which they act, along
the string. Thus the forces ~FA and ~FB exerted by the string segments at
A and B have these values:

40°

40°

F
`

A

F
`

B

50
ne

wt
on

50 newton

x̂

ŷ

You can add these vectors most easily by first expressing each as a sum
of component vectors parallel to x̂ and ŷ.

Since the particle inside the dotted lines remains at rest, the total force
on it due to the two string segments and due to the foot must be zero.
Use this fact to find the force on the particle due to the foot. Then find
the force on the foot due to the particle.

s-10 (Text problem C-3): Part (c): In describing forces on an object,
we shall represent the object by a large dot, and draw from this dot
arrows representing the forces. Use the following properties of forces to
determine the directions of the three forces on the child: The normal force
due to a surface is perpendicular to the surface and directed away from
it. The frictional force due to a surface is parallel to the surface and has
the direction opposite to the velocity of the parts of the object in contact
with the surface. The gravitational force is directed downward.

s-11 (Text problem H-1): Part (b): The car’s weight is the magnitude
mg of the gravitational force. Therefore the frictional force has the mag-
nitude Ff = (0.60)mg.

When you have found a value for the car’s acceleration ~a, apply the fol-
lowing relations from Unit 406 to find the remaining values:
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Motion with constant acceleration along a straight path:

∆v = ~a(∆t), ∆r = ~vA(∆t) + 1/2~a(∆t)
2

Motion with constant speed along a circular path:

a = v2/r

In applying the relations describing motion along a straight path, express
vectors by using a unit vector parallel to the path. As a car’s speed
decreases, its acceleration has a direction opposite to its velocity.

s-12 (Text problem H-3): The equation of motion for the wheelchair is:

m~a = ~FO + ~Fg + ~Fn, where ~a = ~0 is the chair’s acceleration, and ~Fg and
~Fn are the gravitational and normal forces on the chair.

To find ~FO, which is parallel to the ramp, we proceed as in Example E-1
to use the equation of motion to relate component vectors parallel to the
ramp (i.e., parallel to x̂).

What are the component vectors parallel to x̂ of the following forces:

- ~FO:

- ~Fg:

- ~Fn:

Write the wheelchair’s component equation of motion relating quanti-
ties parallel to the ramp surface.

-

(Answer: 9) Now: Return to text problem H-3.

s-13 (Text problem F-2): Use the strategy discussed in text section D
to successively apply the equation of motion first to cart 2 and then to cart
1. Check your work, making sure it includes the following information.
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Description:

Convenient symbols for known and desired information:

Cart 1 Cart 2
mass m1 m2

acceleration ~a1 ~a2

normal force due to ground surface ~F1,n
~F2,n

gravitational force ~F1,g
~F2,g

force on cart 1 due to cart 2 ~F1,2 - - -

force on cart 2 due to cart 1 - - - ~F2,1

force on cart 1 due to tractor ~F1,t - - -

Planning:

Part (a): The equation of motion for cart 2 is:

m2a2 = ~F2,n + ~F2,g + ~F2,1

Part (b): The equation of motion for cart 1 is:

m1a1 = ~F1,n + ~F1,g + ~F1,2 + ~F1,t

Although ~F1,2 is not initially known, it can be found from the value for
~F2,1 found in part (a).

s-14 Text problem C-2, tutorial frame [e-1]): The following discussion
reviews the procedure (introduced in Unit 407) for constructing compo-
nent vectors. To illustrate this procedure, let us find the component forces
~Ff and ~Fn parallel and perpendicular to a roof surface of the force ~Fσ
due to that surface.

To find these component vectors, draw a line through the tail of ~Fσ and
parallel to the roof surface. Draw a line through the tip of ~Fσ perpendicular
to the roof surface. These lines should intersect in a right angle at point
P . Then ~Ff can be drawn from the tail of ~Fσ to the point P , and ~Fn can

be drawn from the point P to the tip of ~Fσ.
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Construct arrows representing the component vectors ~Ff and ~Fn par-
allel and perpendicular to the roof surface.

-

F
`

s
60°

Use trigonometry to find the magnitudes of ~Ff and ~Fn, and then ex-
press these vectors as multiples of the unit vectors x̂ and ŷ.

- ~Ff =

- ~Fn =

(Answer: 4) Now: Go to practice problem [p-1].

s-15 Text problem D-3: Application of the problem-solving strategy
should include the following results. Vectors are specified by using the
convenient upward unit vector ŷ.

Description:

F
`

t a
` ŷ

g
`

~a = 1.0m/s2ŷ

~Ft = 22newtonŷ

~Fg = m~g (the gravitational force)
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desired: m

Planning:

The lamp’s equation of motion is:

m~a = ~Ft + ~Fg

Expressing this equation in terms of symbols for known and desired quan-
tities, we obtain:

m~a = ~Ft +m~g

Implementation:

We wish first to find an algebraic expression for m.

m~a−m~g = ~Ft

or

m(~a− ~g) = ~Ft

Hence magnitudes are related in this way:

m|~a− ~g | = | ~Ft|

or

m = ~Ft/|~a− ~g |

Use the directions of ~a and ~g to decide whether |~a− ~g | equals (a+ g) or
(a− g).

- (a+ g) , (a− g)

(Answer: 5) Now: Return to text problem D-3.
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ANSWERS TO PROBLEMS

1. ~Ff = −207 newton x̂; ~Fn = 773 newton ŷ

2. Fd = 1.5× 10
2 newton, Fs = (1.4 or 1.5)× 10

2 newton,
Fs = (3.6 or 3.8)Fg

3. a. forces due to gravity, hall floor, and nurse. Only force due to nurse
has a non-zero component along the path.

b. Largest: F2; Smallest: F1 and F3

c. (2)

4.

F
`

s

P

F
`

n

F
`

f

~Ff = 400 newton x̂; ~Fn = 693 newton ŷ

5. a+ g, because ~a and ~g are opposite in direction.

6.

F
`

n

F
`

n

F
`

g
F
`

g

F
`

50 newton
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~F = 210 newton downward along the slide, ~a = 6.0m/s2 downward
along the slide.

7. 7.0× 103 kg

8. ~a = 1.0m/s2 towards the left, 20 sec

9. ~F0: ~F0; ~Fg: −~F (cos θ)x̂ = −mg(cos θ) x̂; ~Fn: ~0; m~a = m~0 = ~F0 +
(−mg cos θ) x̂

10. 1.0× 102m/s2 upward

11. ~a = (3.3m/s2) x̂

12. a. 100 newton

b. 100 newton upward, 100 newton upward, W = 200 newton

c. 250 newton

13. a. V =
√

Fmd/(2m)

b. All have long legs, resulting in a long stride length d, thin legs,
resulting in a small mass m, and powerful muscles located in their
body, where they do not increase the mass m of the legs.

14. a. ~a = ~Ff/m

b. mC~a ′ = ~FC,T + ~Ff , mT~a ′ = ~FT,C , where the mutual forces on

the car and trailer due to each other are ~FC,T and ~FT,C . [Each
equation of motion may also include a gravitational force and a
normal force due to the road, but for each particle the sum of
these forces is zero.] ~a ′ = ~Ff/(mC +mT )

c. Because ~a ′ is smaller than ~a, the velocity of the car and trailer
changes less rapidly than that of the car alone. Therefore the car
and trailer require a longer time to come to rest.

15.

F
`

n

a
`

= 0

F
`

g

F
`

m

F
`

f
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The four forces are ~Fm due to the man, ~Ff and ~Fn, the frictional and

normal forces due to the wall, and ~Fg due to gravity. The frictional
force must be parallel to the wall surface, and here it is upward.

16. m~a = ~0 = ~Fs + ~Fd + ~Fg; ~0 = ~Fs + (−Fd cosφ) x̂; ~0 = ~Fg + (Fd sinφ) ŷ

17. a. ~Fσ = m~a − m~g, where m is the mass of the car and ~a its
acceleration. ~a = v2/r toward the right, where v is the car’s speed
and r the radius of its path.

1000 newton

ma
`

F
`

s

mg
`

ŷ

x̂

b. tan θ = 3/15; θ = 11◦

18. Description:

ŷ

Known: mass of elevator: m = 2.0× 103 kg

acceleration of elevator: ~a = 3.0m/s2 ŷ

maximum force exerted by cable: ~Fmax = 3.5× 10
4 newton ŷ

Desired: tension force due to cable: ~Ft
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Planning :

Consider the elevator as the particle.

m~a = ~Fg + ~Ft, where ~Fg = m~g is the downward gravitational force
on the elevator.

m~a = m~g + ~Ft. All quantities known except ~Ft.

ŷ a
`

g
`

Implementation:

~Ft = m~a−m~g

~Ft = (2.0× 10
3 kg)(3.0m/s2 ŷ)− (2.0× 103 kg)(−10m/s2 ŷ)

~Ft = 2.6× 10
4 kgm/s2 ŷ = 2.6× 104 newton ŷ

Checking :

yes, yes, yes

No, this force will not break the cable.

101. a. 10 newton downward

b. 10 newton downward

c. 5× 105 newton downward or towards the earth’s center

102. ~Fn = 693 newton ŷ; ~Ff = 400 newton x̂

103. 4.0m/s2 toward the left, 20m/s

104. the earth, the surface of the hand, the surface of the notebook

105. a. earth, slide surface

b. ~Fg, ~Ff , ~Fn
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c.

F
`

n

F
`

g

F
`

f

slide surface

106.

F
`

n

F
`

g

F
`

t
surface

rope

For the force due to the rope, you might choose ~Ft (tension force) or
~Fr (force due to the rope).

107. rope, earth

108. a. larger, to the left

b. smaller, to the right

109. 6.0m/s2 downward along the slide surface

110. a. mass

b. weight

c. weight

d. mass

e. weight

111. ~a = ~Ff/m, ~Fn = −m~g, or m~g upward; ~a = 2.0m/s2 west; ~Fn =
1.5× 104 newton upward

112. Weight: Stockholm; Mass: same for both.

113. 80◦, 1.7m/s2x̂, (3.4 or 3.5)m/s x̂
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114. a. 100 newton, 100 newton, 100 newton

b. forces due to hand, beam, gravity; W = 2Fr,h = 200 newton

c. 100 newton

115. frictional force: 1.8× 102 newton x̂; normal force: 1.5× 103 newton ŷ.

116. The arrow should be equal in magnitude and opposite to the one
shown in Fig.G-1: −1.4m/s2 x̂

117. a. 53 newton x̂

b. −53 newton x̂

c. 60 newton x̂

118. a. 450 newton toward the right

b. 450 newton toward the left

c. 900 newton toward the right

119. a. m~a = ~Ft+ ~Fg, where ~Fg = m~g is the downward gravitational force
on the lamp.

b. m = Ft/|~a− ~g | = Ft/(a+ g)

c. 2.0 kg

120. 220 newton upward, ~Fb,s = 550 newton upward

121. Path (a)

122. 20 newton upward

123. a. ~F0 = mg cos θ x̂

b. yes, yes

c. ~F0 = mg cos θ x̂

124. ~F2

125. a. ~a = ~Ff/m

b. 6.0 m/s2, 4.0 sec, 48meter, 30m/s

c. 0.67m/s2, 36 sec, 4.3× 102meter, 10m/s

126. a. 2.8× 104 newton upward, 3.3× 104 newton upward

b. 650 newton upward

c. The force exerted at the ankle joint is larger than that exerted at
the hip joint. (Also the ankle, being thinner, breaks more easily.)

127. frictional force: 50 newton ŷ; normal force: −100 newton x̂

128. 50 newton, 76 newton x̂, 76 newton x̂
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MODEL EXAM

1. Measuring the mass of a birthday present. An inquisitive boy
wants to measure the mass of his birthday present (to see if it is an
electric train or just some clothes). But because he has been forbidden
to lift the box it is in, he decides to find its mass in the following
way. He pulls the boxed present across the rug by using a spring scale
which exerts a known horizontal force on the present. He finds that the
frictional force exerted on the box due to the rug has a magnitude of
25 newton, and that a spring force of magnitude 28 newton is sufficient
to give the box an acceleration of magnitude 0.5m/s2 along the rug.

What is the mass of the boxed birthday present? Show all your work.
Your solution should be sufficiently complete and systematic that it
can be understood by another person.

2. Forces involved in pulling a wagon. A boy pulls a wagon by
exerting on it the force ~Fb shown in the following diagram. The wagon
moves with negligible friction along the horizontal sidewalk. His older
sister then pulls the same wagon by exerting on it a force ~Fs which
has the same magnitude as ~Fb, but has the direction shown in the
following diagram.

F
`

b

F
`

s

Does the wagon have a larger acceleration along the sidewalk when the
boy is pulling it or when the sister is pulling it?
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Brief Answers:

1. Grader: look for evidence of using m~a = ~Fs + ~Ff , where ~Fs = force

due to scale, ~Ff = frictional force. (May also include gravitational and

normal forces.) Look for substitution of values such that ~Fs and ~Ff
have opposite directions. Answer: 6 kg

2. the boy
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