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LEAST SQUARES FITTING
OF EXPERIMENTAL DATA

by

Robert Ehrlich

1. Introduction to Hypothesis Testing

1a. Overview. In this module we discuss and use the “least squares”
method for fitting a mathematical function to a set of experimental data.
The various values in the data set result from unavoidable experimental
error and from controlled variations of one or more independent param-
eters by the experimentalist. The mathematical fitting function must be
a function of the same independent parameters as were varied in the ex-
periment. Such a mathematical fitting function constitutes a hypothesis
about how the dependent (measured) quantity varies in nature as the in-
dependent variables change. Thus it is a hypothesis as to the theoretical
relationship involved. The least squares fitting method is accomplished by
varying one or more additional (“free”) parameters in the mathematical
function so as to minimize the sum of the squares of the deviations of the
fitting function from the data at corresponding values of the independent
experimentally-varied parameters. The minimum value for the sum of the
squared deviations is called “chi-squared” and is written x2. The values
of the free parameters yielding the minimum square deviation sum define
the best fit to the experimental data, given the chosen mathematical form
for the assumed relationship among the data. A comparison of the value
of chi-squared for this fit with a standard chi-squared table enables us to
determine the probability that deviations of the data from the theoretical
curve could be attributed to the kinds of random fluctuations that are
assumed to be present in the particular experimental measurement pro-
cess. If this “goodness of fit” test yields a low probability of being due
solely to the assumed random fluctuations, then it could mean that there
are either unexpected errors in the data or that the assumed theoretical
relationship is in error. A high probability would only mean that the
data are consistent with the theory, not that they and the relationship
are necessarily correct.

1b. Consistency Between Data and Theory. In analyzing data
from an experiment, we are generally trying to determine whether the
data are consistent with a particular theoretical relationship. Suppose the
data consist of a set of n values of some measured quantity y: y1, y2, ..., yn,
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Figure 1. A set of data which is
reasonably consistent with func-
tion y = f(x).

corresponding to n associated values of some independent variable x:
x1, x2, ..., xn. In most experiments it is also possible to assign to each
data point (xj , yj), a “random error” (really an uncertainty) of measure-
ment, σj , which depends on the precision of the measuring apparatus.
There may also be an uncertainty in the independent x variable, but
we shall simplify the analysis by ignoring this possibility. Suppose we
wish to test whether x and y satisfy some particular functional relation-
ship y = f(x). A rough simple test of whether the data are consistent
with the hypothesized relationship can be made by plotting the function
y = f(x) on the same graph as the data (x1, y1), ..., (xn, yn). The data
may be considered roughly consistent with the function y = f(x) if they
lie near the curve and are scattered on either side of it in a random looking
manner (see Fig. 1). It is highly unlikely that the center points of all of
the data will lie exactly on the curve, due to random measurement error:
the data and the functional curve shown in Fig. 1 would be considered
quite consistent with each other. Note that the vertical “error bar” on
each data point extends above and below the point a distance equal to
the random measurement “error” σj . A data point could be considered
“near” the curve if its distance to the curve in the y direction is no greater
than the assigned measurement error σj , in which case the error bar in-
tersects the curve.This vertical distance from the data point to the curve
is the “residual” for the point (xj , yj), and is given by

rj = yj − f(xj). (1)

Note that the residual rj is positive or negative, depending on whether
the data point is above or below the curve.

6
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1c. Consistency Measured In Terms of Probability. The quan-
tity tj = rj/σj , is a measure of the discrepancy between the jth data
point and the theoretical curve. We might consider a set of data consis-
tent with a curve even if the magnitudes of some of the residuals rj are
greater than the corresponding measurement errors σj , which is the case
for two of the data points in Fig. 1. This is because the measurement
error σj is usually defined such that there is some specific probability
(less than 100%) of any particular measurement falling within a range of
±σj of the true value. In fact, one way to experimentally determine the
measurement error σj is to make many repeated measurements of yj for
the same value of xj , and then find a value for σj such that a specific
percentage (often chosen to be 68%) of all measurements fall within ±σj

of the average value yj . If the theoretical curve y = f(x) is correct, as
the number of repeated measurements at the same value of xj becomes
infinite, we expect yj = f(xj), i.e., we expect the average of all measure-
ments to lie right on the curve. Furthermore, for any single measurement
yj , there is a 68% chance that the residual rj is less than σj . Thus, there
is a 68% chance that |rj/

s
j | < 1 (error bar intersects curve), and a 32%

chance that |rj/σj | > 1 (error bar does not intersect curve).

1d. Chi-Squared and Probability. The quantity chi-squared (x2) is
a measure of the overall discrepancy between all the data points and the
theoretical curve, where x2 is defined as

χ2 =

n
∑

j=1

t2j =

n
∑

j=1

(

rj

σj

)

. (2)

Thus the value of x2 is a measure of the goodness of fit of a theoretical
curve y = f(x) to a set of data points. In the best conceivable fit, the
case where all data points would be lying exactly on the curve, we would
find x2 = 0. For a reasonably good fit (all the residuals rj comparable to
the measurement errors sj), we would find x2 = n, where n is the number
of data points. If each of the individual measurements is assumed to
have a Gaussian probability distribution about some unknown true value
it is possible to calculate the probability that x2 has a particular value.
This is usually expressed in terms of a cumulative probability, P (x2, n)
or “confidence level.” The number P (x2, n) is the probability of finding
a value for x2 at least as great as the value actually computed, assuming
that the hypothesized function y = f(x) is correct and that the deviations
for each data point are only the result of random measurement error. A
chi-squared table is given in Table 1.
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Table 1. Chi-squared values for sample size and confidence level.

Sample Confidence Level (P )
Size (n) .90 .80 .50 .30 .01

1 .0158 .0642 .455 1.074 6.635
2 .211 .446 1.386 2.408 9.210
3 .584 1.005 2.366 3.665 11.345
4 1.064 1.649 3.357 4.878 13.277
5 1.610 2.343 4.351 6.064 15.086
6 2.204 3.070 5.348 7.231 16.812
7 2.833 3.822 6.346 8.383 18.475
8 3.490 4.594 7.344 9.524 20.090
9 4.168 5.380 8.343 10.656 21.666
10 4.865 6.179 9.342 11.781 23.209

The first column in the table lists n values from 1 to 10. The table entries
in the row for each n value are the values of x2 corresponding to the
confidence level listed as column headings. As can be seen for a given
value of n, a value of x2 which greatly exceeds n goes along with a low
confidence level. A low confidence level means that the fit is a poor one,
and that it is unlikely that the hypothesized relation y = f(x) is consistent
with the data.

1e. An Example of Hypothesis Testing. To illustrate these points,
suppose we do not know which of three hypothesized functions f1(x),
f2(x), or f3(x), describes the relation between the variables y and x (see
Fig. 2). For the three functions we use Eqs.(1) and (2) to compute three
values of x2(x2

1, x
2
2, x

2
3), which indicate the goodness of fit for the three

functions. We can use these three values in a chi-squared test in an
attempt to determine which of the three functions is correct. Let us
assume that the three computed values are x2

1 = 6.2, x2
2 = 10.8, x2

3 =
23.2. We then use the chi-squared table (with n = 10) to find the three
probabilities corresponding to these values of x2: P1 = .80, P2 = .40,
P3 = .01. An interpolation between table entries is necessary to get
P2. The result P3 = .01 means that only 1% of the time would random
errors result in so large a value of x2, assuming that y = f3(x) is the
correct relation between y and x. We normally regard a confidence level
this low as grounds for rejecting the hypothesis that f3(x) is the correct
relation between y and x. For the functions f1(x) and f2(x), the respective
probabilities 80% and 40% mean that f1(x) is a somewhat better fit than
f2(x). However, we do not reject f2(x) simply because the probability P2

is only half P1.
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Figure 2. A set of data points
and three hypothethized func-
tions f1(x), f2(x), and f3(x).
The chi-squared test can be used
to reject f3(x), but it cannot
differentiate between f1(x) and
f2(x).

A 40% confidence level is not so low that the hypothesis can be
rejected. Furthermore, we cannot even claim that the probability of f1(x)
being the correct function is twice as great as the probability of f2(x)
being the correct function. The only conclusion we can draw from the
chi-squared test is that we cannot decide which of the two functions f1(x)
or f2(x) is the correct one, since both give reasonably good fits to the data.
From this example, we see that the chi-squared test is useful in rejecting
hypotheses, but it cannot be used to prove the correctness of a particular
hypothesis (unless every other possible hypothesis is rejected).

2. χ2 Test and Least Squares Fitting

Apart from finding the goodness of fit for comparing specific functions
[such as f1(x), f2(x) and f3(x)], the chi-squared test can find the goodness
of fit for a function f(x) which is not completely specified, but which has
a number of “adjustable” parameters a1, a2, ..., am, whose values are not
known a priori. In fact, an important application of the chi-squared test
is the determination of the values of the parameters which give the best
fit to the data. In other words, we wish to determine the values of the
parameters a1, a2, ..., am, which give x2 , the minimum value of the sum of
the squares of the residuals. This is known as the method of least squares
since it involves minimizing the sum of the squares of deviations (Eq.2)
with respect to the adjustable parameters a1, a2, ..., am. The function f(x)
which has the minimum square residual sum is called the “least squares
fit,” and, according to the chi-squared criterion, it is the best fit to the
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data. At the same time that we find the least squares fit, we can also
determine if the fit is, in fact, a good one. This means finding whether
the value of x2 corresponds to a reasonably high confidence level. In using
the chi-squared table to find the confidence level for a fit to n data points
which involves m adjustable parameters, we must use the difference n−m
(rather than n itself). The difference n −m is known as the number of
“degrees of freedom.”

3. Linear, One Adjustable Parameter

3a. Formal Solution. The simplest type of least squares fit involves
a single adjustable parameter a, which multiplies a function f(x) that is
otherwise completely specified: y = af(x). In this case, we may write for
S:

S =
∑

j

(

rj

σj

)2

=
∑

j

(yj − α f(xj))
2

σ2
j

(3)

To find the value of the parameter α which minimizes S, we set the partial
derivative ∂S/∂α = 0:

∂S

∂α
=
∑

j

−2f(xj)(yj − αf(xj)

σ2
j

= 0.

Solving for α, we obtain the expression

α∗ =

∑

j

f(xj)yj

σ2
j

∑

j

(f(xj))
2

σ2
j

, (4)

where the asterisk indicates that this is the value of α which gives the
minimum value of S, which is χ2. We can obtain an estimate of the
uncertainty in α by determining the change in α from the least squares
fit value α∗ which increases S by some specified amount greater than the
minimum value, χ2. The uncertainty ∆α is usually defined so that the
value of S for both α = α∗ + ∆α and α = α∗ − ∆α is equal to χ2 + 1,
where χ2 = Smin for α = α∗ (see Fig. 3). It can be shown that, for a
one-parameter fit, the uncertainty ∆α is given by

∆α =





∑

j

(f(xj))
2

σ2
j





−1/2

. (5)
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Figure 3. A plot of S against α near the minimum value,
chi-square.

A special case of a one-parameter fit that occurs quite frequently is f(x) =
1, which gives y = α for the theoretical curve. In this case, the least
squares fit value of α∗ given by Eq. (4) is the y-intercept of the horizontal
straight line which gives the best fit to the data points (x1, y1), ..., (xn, yn).
In effect, α∗ is the weighted average of y1, ..., yn, with weights inversely
proportional to the square of the measurement errors σ1, ..., σn.

3b. Example: Fitting ω Mass Data. As an example of the spe-
cial case f(x) = 1, in Table 2 we list nine independent measurements
(y1, ..., y9) of the mass of the omega meson (a subatomic particle), to-
gether with estimated measurement errors (σ1, ..., σ9) from nine different
experiments.

11
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Table 2. Values of ω mass and year reported.

Mass (MeV/c2) Error (MeV/c2) Year Reported
779.4 1.4 1962
784.0 1.0 1963
781.0 2.0 1964
785.6 1.2 1965
786.0 1.0 1966
779.5 1.5 1967
784.8 1.1 1968
784.8 1.1 1969
784.1 1.2 1970

For the nine x-values x1, ..., x9, we use the year each measurement was
reported. Since the mass of a subatomic particle should not depend on
the year the measurement was made, the curve we wish to fit to the nine
data points, shown plotted in Fig. 4 is a horizontal line y = α. To find
the value of α which minimizes S, we use Eq.(4) with f(x) = 1:

α∗ =

∑

j

yj

σ2
j

∑

j

1

σ2
j

.

Upon substitution of the nine masses (y1, ..., y9) and measurement errors
(σ1, ..., σ9), we find α∗ = 784.12. Similarly, to find the estimated uncer-
tainty ∆α, we use Eq.(5) with f(x) = 1:

∆α =





∑

j

1

σ2
j





−1/2

,

from which we find ∆α = 0.39. Thus the value α = 784.12 + 0.39 rep-
resents the weighted average of the omega meson’s mass found from a
one-parameter least squares fit to the nine experimental values. The solid
horizontal line in Fig. 4 indicates the value of α∗ and the dotted horizontal
lines indicate the band corresponding to the range α∗ +∆α. In addition
to finding the value of one or more parameters from a least squares fit,
we can use the chi-squared test to determine if this best fit is a good one.
By substitution of α = 784.12, f(x) = 1, and the experimental values for
y1, ..., y9; σ1, ..., σ9, into Eq. (3), we obtain: χ2 = 32.3. According to the
chi-squared table in the Appendix the probability of finding a chi-squared
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this high for eight degrees of freedom is less than .01. In other words, the
best fit is not a good one in this case. This actually should be obvious
from a visual inspection of the data points in Fig. 4, since there is no
horizontal line which would pass reasonably close to all the data points.

3c. Whether the “Bad” Data Should be Dropped. If all the
data points and measurement errors are correct, the chi-squared test gives
grounds for rejecting the hypothesis that the mass of the omega meson
is a constant, independent of the year it is measured! A more plausible
interpretation of the poor fit is that one or more of the reported measure-
ments is in error. We notice, for example, that if the measurements made
in 1962, 1964, and 1967 are dropped, the remaining six measurements
are quite consistent with a horizontal line. However, arbitrarily dropping
these three data points in order to improve the fit would probably be
unwise, because it seems likely that some of the experimenters made sys-
tematic (i.e., nonrandom) errors, and statistical tests cannot be used to
prove which experiments are in error. In practice, of course, if one exper-
iment out of a large number gives a significantly different result from the
others, we might be tempted to discard that result. However, this should
not be done unless we can be reasonably certain that the anomalous re-
sult cannot be ascribed to better apparatus or other favorable conditions
which were absent in all the other experiments, causing them to be in
error. Dropping “bad” individual data points within a given experiment
is a less dangerous procedure, but even here caution must be exercised
lest the “bad” data points reveal systematic errors.

4. Two Adjustable Parameters

4a. Formal Solution. A two-parameter least squares fit to a set of
data can be easily made if the relation between y and x is linear in the
parameters α1 and α2, that is if

y = α1f1(x) + α2f2(x),

where f1(x) and f2(x) are two specified functions. We shall consider the
important special case f1(x) = 1 and f2(x) = x, where we wish to make
a least squares fit to the straight line y = α1 +α2x. In order to minimize
the square residual sum with respect to the two parameters a1 and α2,
we require that the two partial derivatives ∂S/∂α1 and ∂S/∂α2 vanish.
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Figure 4. Plot of ω0 mass against year reported.

Thus, with S given by

S =
∑

j

(yj − α1 − α2xj)
2

σ2
j

,

we require that

∂S

∂α1

=
∑

j

−2(yj − α1 − α2xj)

σ2
j

= 0 (6)

and
∂S

∂α2

=
∑

j

−2xj(yj − α1 − α2xj)

σ2
= 0. (7)

Solving Eqs.(6) and (7) simultaneously for the two unknowns, α1 and α2,
we obtain the values of α1 and α2 which minimize S:

α∗1 =
1

∆
(sxxsy − sxsxy)

α∗2 =
1

∆
(s1sxy − sxsy),

(8)
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where we have used the abbreviations

s1 =
∑

j

1

σ2
j

; sx =
∑

j

xj

σ2
j

; sy =
∑

j

yj

σ2
j

;

∆ = s1sxx − s2x; sxx =
∑

j

x2
j

σ2
j

; sxy =
∑

j

xjyj

σ2
j

.

As in the case of the one-parameter least squares fit, each of the pa-
rameters α1 and α2 has an uncertainty which indicates the amount each
parameter must be independently changed from the least squares fit val-
ues in order to increase the computed value of S to one greater than the
minimum value, χ2. It can be shown that the two uncertainties ∆α1 and
∆α2 are given by

∆α1 =
(sxx

∆

)1/2

∆α2 =
(s1
∆

)1/2
(9)

We may also define a “correlation term” which indicates how the value of
χ2 changes when the parameters are simultaneously varied. In the case
of the two-parameter fit, there is one correlation term: ∆α12 = −sx/∆.

4b. Pseudo-Linear Least Square Fits. Least squares fits can be
found for functions which are not linear but the nonlinear fitting can be
quite complex. Therefore it is often desirable to transform the measured
variables to other variables which do obey a linear relation. For example,
if we measure the level of radioactivity (R) from a radioactive source as a
function of time (t) it is found that R is an exponential function of time
given by

R = R0e
−t/T . (10)

where R0 is the level of radioactivity at time t = 0, and T is the so-called
“lifetime,” the time for the level of radioactivity to drop to e−1 ∼= 37% of
its original value. Taking the logarithm of each side of Eq.(10) yields:

`nR = `nR0 − t/T. (11)

Now substitute y = `nR and x = t and see that you have transformed
the radioactive decay law [Eq.(10)] into a relationship in which the y
and x variables are linearly related. This substitution of variables then
permits a least squares straight line fit to be done on a set of data from
which the value of the lifetime T can be determined. Another reason for

15

MISN-0-359 12

transforming the measured quantities to obtain a linear relation is that
we can then often tell by visual inspection whether a straight line is a
good fit to the plotted data points, thereby testing the original relational
hypothesis.

4c. Example: Acceleration Data. As an illustration of a least
squares straight line fit, in Table 3 we show a set of data obtained from
a simple experiment using a cart sliding down an incline with negligi-
ble friction (an air track). The angle of inclination from the horizontal
is θ = 0.005546 rad. The data represent the measured times for a cart
released from rest to travel various distances along the track.

Table 3. Distance (d) vs. time (t) for an air-track cart.

t(sec): 0.7 1.3 1.9 2.5 3.1 3.7 4.1 4.9 5.6
d(cm): 1 4 9 16 25 36 49 64 81

t(sec): 7.5 7.9 8.5 9.1 6.1 6.7
d(cm): 144 169 196 225 100 121

We expect the data to be consistent with the relation:

d =
1

2
g sin θ t2, (12)

where g is the acceleration due to gravity. We can solve Eq.(12) for t to
obtain

t =

(

2

g sin θ

)1/2

d1/2. (13)

We can therefore get a linear relation if we make the transformation t→ y,
d1/2 → x. The transformed data points (t against d1/2) are plotted in
Fig. 5. The small error bars on each point indicate the measurement
errors in t. Based on repeated measurements for each point, the error
was estimated to be ±0.1 seconds for all points. The data points seem to
be reasonably consistent with a straight line y = α1 +α2x, where α1 = 0.
In fact, a fairly good straight line fit to the data can be found be simply
drawing a straight line with the data points distributed on either side of
it in a random manner.

For a more precise result, we can find the slope α2, y-intercept α1, and
the associated errors ∆α2 and ∆α1, for the least squares fit straight line,
using Eqs. (8) and (9). We can determine a value for g, the acceleration
due to gravity, from the slope of the line. According to the form of
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Figure 5. Plot of d1/2 against t for data from air-track
experiment.

Eq. (13), the slope α2 is given by

α2 =

(

2

g sin θ

)1/2

, (14)

which can be solved for g, to obtain

g =
2

α2
2 sin θ

. (15)

The theory of first-order error propagation can be used to find the uncer-
tainty in a quantity calculated from a known function of the parameters
α1 and α2. Since g depends only on α2, we can find the magnitude of the
error in g using

∆g =

∣

∣

∣

∣

dg

dα2

∣

∣

∣

∣

∆α2. (16)

From Eqs.(15) and (16), we find that the percentage error in g is twice
the percentage error in α2:

∆g

g
= 2

∆α2

α2

. (17)
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In this example, we could have used our a priori knowledge that the y-
intercept should be zero, and found a one-parameter least squares fit to
the function y = αx. We would use Eqs.(4) and (5) with f(x) = x to
obtain

α∗ =

∑

j

xjyj

σ2
j

∑

j

x2
j

σ2
j

and

∆α =





∑

j

x2
j

σ2
j





−1/2

.

One advantage of the one-parameter fit here is that a smaller value for the
uncertainty in the slope ∆α would probably be found due to the more
constrained nature of the fit. On the other hand, the two-parameter
fit has the advantage that we may possibly establish the existence of a
systematic error in the data should we find that α∗1 (the y-intercept) is
significantly different from zero.

4d. Fit With Unknown Measurement Errors. We can find a
least squares fit even in cases where the measurement errors σ1, ..., σn,
are unknown, by assuming that the errors are the same for all points. If
we call the common (but unknown) error σ, then Eq.(2) becomes

S =
1

σ2

n
∑

j=1

r2j . (18)

Since σ is a constant, we can minimize S with respect to the param-
eters α1, α2, ..., αm, without knowing the value of σ. However, if we
wish to determine the uncertainties in the parameters for the best fit:
∆α1,∆α2, ...,∆αm, a value for σ is needed. A reasonable estimate for σ
is the root mean square (RMS) value of the residuals:

(

∑

r2j
n

)1/2

, (19)

which is a measure of the average “scatter” of the points about the least
squares fit curve. Thus it is possible to find values for the parameters
α1, α2, ..., αm, and estimated uncertainties ∆α1,∆α2, ...,∆αm, for the
least squares fit, even though the measurement errors σ1, σ2, ..., σn are

18
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unknown. However, it is not possible to use the computed value of χ2

to tell if the “best” fit is any good because by assuming the value for σ
computed via Eq.(19), we have, in effect, assumed a value for χ2 equal to
n, as can be seen by substitution of Eq. (19) into Eq. (18).

5. Program for Least Squares Fits

5a. Input. Our program1 associated errors (xj , yj , σj); j = 1, 2, ..., N .
The errors (σj) are optional. The program does a two-parameter least
squares straight line fit to the data and it calculates the best fit values
of the parameters and their associated errors: α1 ±∆α1 and α2 ±∆α2.
It also calculates a value for chi-squared for the best-fit straight line. If
zero measurement errors are input the program assumes that the σj are
unknown. In that case, all the σj are assumed to be equal to the computed
RMS value of the residuals and then chi-squared will not be a meaningful
indicator of the goodness of fit.

Table 4. Computer output: Residuals for some air-track data.

NUMBER OF DATA POINTS = 15.00000
X Y DY RESIDUALS
1.00000 0.70000 0.10000 .02083
2.00000 1.30000 0.10000 .01690
3.00000 1.90000 0.10000 .01298
4.00000 2.50000 0.10000 .00905
5.00000 3.10000 0.10000 .00512
6.00000 3.70000 0.10000 .00119
7.00000 4.10000 0.10000 −.20274
8.00000 4.90000 0.10000 −.00667
9.00000 5.60000 0.10000 .08940
10.00000 6.10000 0.10000 −.01452
11.00000 6.70000 0.10000 −.01845
12.00000 7.50000 0.10000 .17762
13.00000 7.90000 0.10000 −.02631
14.00000 8.50000 0.10000 −.03024
15.00000 9.10000 0.10000 −.03417

5b. Sample Output. The output shown in Table 4 was obtained
using the 15 data points listed in Sect.4c. After typing back the input

1See this module’s Computer Program Supplement.
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variables and the calculated residuals, the program outputs the calcu-
lated parameters (α1, α2, χ

2) and gives a plot of the best fit straight line,
as shown in Fig. 6. The data points are indicated on the plot by the letter
“O.” Examining the output we notice that the residuals are all reason-
ably small compared to the measurement errors; in only one case does a
residual exceed twice the error. There may, however, be some systematic
variation in the residuals, which would indicate the presence of a small
systematic error. The plotted least squares fit straight line appears to be
quite consistent with the data points (shown as circles). In order to use
the table in the Appendix to determine the confidence level for the fit, we
need to specify the number of degrees of freedom (13). The value of χ2

for the least squares fit is 8.5 in the output. According to the χ2 table,
the confidence level for a χ2 of 8.5 with 13 degrees of freedom is about
0.80, or 80 percent, which means the fit is very good. The values of the
parameters α1, α2, and their errors, for the least squares fit straight line
are given in the output as:

α1 = 0.07523± 0.05433,

α2 = 0.60392± 0.00597.

The value of the y-intercept (α1) is therefore almost consistent with zero.
The fact that the value is a bit further from zero than the uncertainty
∆α1 is probably not significant. From the value for the slope α2, we can
compute values for g and ∆g using Eqs.(15) and (17):

g = 986± 20 cm/sec2,

which is consistent with the accepted value, 980 cm/sec2.

6. A Project

6a. A Linear Least Squares Fit. Run the program using a set of ex-
perimental data (see below). The measured quantities in the experiment
should either satisfy a linear relationship or should be so related that
they can easily be transformed into a pair of linearly related variables. If
you have no such data readily available, you may use a simulated set of
measurements which might have been obtained from a radioactive decay
measurement. Note that the parameters of the fit will be α1 = `nR0 and
α2 = −1/T in this case.
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Figure 6. Sample output from the least squares fitting pro-
gram.

Table 4. Simulated Data from a Radioactive Decay.

t (sec) `nR ∆(`nR)
1.0 10.2 0.2
2.0 9.6 0.2
3.0 8.2 0.2
4.0 5.0 0.2
5.0 6.2 0.2
6.0 4.8 0.2
7.0 4.2 0.2
8.0 2.8 0.2
9.0 2.2 0.2
10.0 3.0 0.2
11.0 −0.6 0.2
12.0 −1.2 0.2
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Run the program using this data and use the output to find the lifetime
(T ) of the radioactive source. Compare your “experimentally” determined
lifetime with the ”actual” value of T = 1.0 seconds.

6b. Goodness-of-Fit Test. Use the computed value of chi-squared
for the fit to find a value for the confidence level using the χ2 table.
Based on the computed residuals, are there any very “bad” data points,
“bad” in the sense of having residuals large compared to the measurement
uncertainty? Redo the fit with these “bad” data points removed. How
does the computed lifetime T now agree with the expected value? How
good is the fit with the “bad” data points removed, based on the chi-
squared table?
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A. Fortran, Basic, C++ Programs

All programs are at

http://www.physnet.org/home/modules/support_programs

which can be navigated to from the home page at

http://www.physnet.org

by following the links: → modules→ support programs, where the pro-
grams are:

m359p1f.for, Fortran;
m359p1b.bas, Basic;
m359p1c.cpp, C++;

lib351.h, needed Library for C++ program;
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MODEL EXAM

1-3. See Output Skills K1-K3.

Examinee:
On your computer output sheet(s):

(i) Mark page numbers in the upper right corners of all sheets.

(ii) Label all output, including all axes on all graphs.

On your Exam Answer Sheet(s), for each of the following parts of items
(below this box), show:

(i) a reference to your annotated output; and

(ii) a blank area for grader comments.

When finished, staple together your sheets as usual, but include the origi-
nal of your annotated output sheets just behind the Exam Answer Sheet.

4. Submit your hand-annotated output showing:

a. the data values;

b. the residuals and chi-squared for the fit;

c. a graph of the data values and the fitted curve;

d. the deduced lifetime;

e. the standard deviation for the deduced lifetime.

5. Submit your determination of:

a. the confidence level for the fit;

b. whether there are any “bad” data;

c. a refit omitting data hypothesized to be “bad”;

d. a comparison of the expected lifetime with the fitted values, with
and without the “bad” data;

e. a comparison of the confidence levels of the fits, with and without
the “bad” data.
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INSTRUCTIONS TO GRADER

If the student has submitted copies rather than originals of the computer
output, state that on the exam answer sheet and immediately stop
grading the exam and give it a grade of zero.
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