4 N
% PHan ET MISN-0-354
o

GENERATION OF
RANDOM NUMBERS BY COMPUTER

.19700 .90515 .29637 .42424 .62188
.80175 .75286 .80151 .53337 .51323
.15799 .03256 .72655 .84777 .12528
.89599 .52696 .27464 .89032 .37010
.41673 .62908 .47612 .01816 .32402
.73241 .41984 .57256 .71374 .37059
.95392 .45476 .81347 .71203 .09305
.43602 .03183 .61504 .90368 .38676
.856522 .81951 .72021 .55431 .30741
.13181 .49309 .72784 .30454 .22312
.96899 .90173 .63091 .83001 .15793
.05521 .36955 .21409 .45866 .32517
.51244 .66619 .88525 .18418 .42796
.61058 .89813 .60649 .77825 .37236
.42235 .32286 .23807 .02280 .49419
.38841 .83093 .98102 .09220 .88208
.66314 .14170 .61791 .51744 .83447

wject PHYSNETePhysics Bldg.®*Michigan State University®*East Lansing,W

GENERATION OF RANDOM NUMBERS BY COMPUTER
by
Robert Ehrlich

1. Pseudorandom Sequences

a. Introduction 1
b. Pseudorandom Numbers ..., 1
c. Period of Pseudorandom Number Sequences 1
d. Distributions of Pseudorandom Numbers 2

2. The Power Residue Method

a. Description of the Method 2
b. Example of the Power Residue Method 2
¢. Optimum Choice of the Parameters 3
d. A Pseudorandom Number Sequence 3

3. Statistical Test of Randomness

a. Frequency Distribution Tests 5
b. Examples of Frequency Distribution Tests 5
c. Frequency of Strings Test il 7
d. No Absolute Tests of Randomness 7
4. Distribution Functions
a. Introduction i 8
b. Uniform Distribution For An Interval 8
¢. Non-Uniform Probability Distributions 9
5. Generating Pseudorandom Numbers
a. Input ..o 9
b, Output ..o 10
¢. Handling Overflows on Different Computers 10
6. Procedures.......... ... 11
a. Length of Period i 11
b. Frequency Distribution Test 11
c. Frequency of Strings Test ...l 12
d. Non-Uniformly Distributed Random Numbers 12
Acknowledgments 12
A. Professional Random Number Discussions........... 12

B. Fortran, Basic, C++ Programs........................ 13

ID Sheet: MISN-0-354

Title: Generation of Random Numbers by Computer

Author: R.Ehrlich, Physics Dept., George Mason Univ., Fairfax, VA
22030; (703)323-2303.

Version: 3/18/2002 Evaluation: Stage 0

Length: 2 hr; 20 pages
Input Skills:

1. Write (or modify) and run programs using advanced programming
techniques such as arrays and nested loops in FORTRAN (MISN-
0-347) or in BASIC.

Output Skills (Knowledge):

K1. Vocabulary: sequence of random numbers, probability density
function, pseudorandom, period of a sequence of pseudorandom
numbers, power residue method, frequency distribution test, fre-
quency of strings test, frequency distribution, non-uniformly dis-
tributed, pseudorandom numbers.

K2. State the conditions for the longest period of a pseudorandom
number sequence generated using the power residue method.

K3. State the criteria for a good pseudorandom number generator.
Output Skills (Project):

P1. Enter and run a computer program which uses the power residue
method to generate a pseudorandom number sequence and test the
sequence obtained for the two criteria of a good random number
generator.

P2. Modify and run the computer program in P1 to generate pseudo-
random numbers which have an exponential distribution function.

External Resources (Required):

1. A computer with BASIC, FORTRAN, or C++.

THIS IS A DEVELOPMENTAL-STAGE PUBLICATION
OF PROJECT PHYSNET

The goal of our project is to assist a network of educators and scientists in
transferring physics from one person to another. We support manuscript
processing and distribution, along with communication and information
systems. We also work with employers to identify basic scientific skills
as well as physics topics that are needed in science and technology. A
number of our publications are aimed at assisting users in acquiring such
skills.

Our publications are designed: (i) to be updated quickly in response to
field tests and new scientific developments; (ii) to be used in both class-
room and professional settings; (iii) to show the prerequisite dependen-
cies existing among the various chunks of physics knowledge and skill,
as a guide both to mental organization and to use of the materials; and
(iv) to be adapted quickly to specific user needs ranging from single-skill
instruction to complete custom textbooks.

New authors, reviewers and field testers are welcome.

PROJECT STAFF

Andrew Schnepp Webmaster
Eugene Kales Graphics
Peter Signell Project Director

ADVISORY COMMITTEE

D. Alan Bromley Yale University
E. Leonard Jossem The Ohio State University
A. A.Strassenburg S.U.N.Y., Stony Brook

Views expressed in a module are those of the module author(s) and are
not necessarily those of other project participants.

(© 2002, Peter Signell for Project PHYSNET, Physics-Astronomy Bldg.,
Mich. State Univ., E. Lansing, MI 48824; (517) 355-3784. For our liberal
use policies see:

http://www.physnet.org/home/modules/license.html.

MISN-0-35) 1

GENERATION OF
RANDOM NUMBERS BY COMPUTER

by
Robert Ehrlich

1. Pseudorandom Sequences

la. Introduction. This module introduces the concept of a “sequence
of random numbers,” and the generation of random number sequences
on a computer. Sequences of random numbers are made use of in the
so-called Monte Carlo method of problem solving. In other modules the
Monte Carlo method is used to find the center of mass of an object,
simulate a nuclear chain reaction, and simulate the decay of a sample of
radioactive nuclei.

1b. Pseudorandom Numbers. A sequence of numbers is said to be
random if the value of each successive number cannot be predicted based
on the preceding numbers. Such numbers could, in principle, be generated
using some process normally considered to be random, such as rolling a
pair of dice. In practice, we will primarily be interested in arithmetic
methods for generating random numbers that can be implemented on a
computer. These sequences are referred to as “pseudorandom,” since the
numbers are generated according to an arithmetic procedure in which each
number is uniquely determined from the ones that preceded it, and there-
fore they cannot be considered truly random. A successful method for
generating pseudorandom numbers yields a number sequence that would
appear indistinguishable from a truly random sequence in the sense that
no regularities of any kind would appear in the sequence beyond what the
laws of chance would predict.

1c. Period of Pseudorandom Number Sequences. In most meth-
ods for obtaining a sequence of pseudorandom numbers, each number in
the sequence is used to find the next one using some arithmetic proce-
dure. Thus the entire sequence is determined given the first number.
Any arithmetic procedure used to generate pseudorandom numbers on
a computer yields a sequence that must repeat itself after some number
of terms. The reason is connected with the finite number of different
numbers that can be represented on a computer owing to the finite size
of each memory word. Let n designate the number of different numbers
that can be represented. Any sequence of n + 1 pseudorandom numbers

MISN-0-35/ 2

must then include at least one duplication which would cause the entire
sequence to repeat, in the event that each number determines the next.
The “period” of the pseudorandom sequence is the number of terms before
a repetition occurs. In practice we want to select a method for generating
pseudorandom number sequences that has a period as large as possible.

1d. Distributions of Pseudorandom Numbers. We normally seek
to generate a sequence of pseudorandom numbers such that the relative
frequency of the numbers obeys some particular distribution function.
Most commonly, it is desired to generate a pseudorandom sequence in
which the numbers are equally likely to have any value in some interval,
for example, the interval 0 to 1. Such a distribution is said to be flat
or uniform since the number of numbers in each sub-interval would be
equal.

2. The Power Residue Method

2a. Description of the Method. The “power residue method” is
widely used and can generate a sequence of pseudorandom integers, which
has both a long period and good statistical properties. Given a first
integer xo, commonly called the process’s “seed,” each successive number
in the sequence can be found from the preceding one, according to

Tp = cTp—1 (mod M), (1)

where ¢ and M are two constant integers. The notation y = z (mod M)
means that if z exceeds M, then the modulus M is subtracted from z as
many times as necessary in order that 0 < y < M; that is, y and z differ
by some multiple of M (for example, 5752 (mod 100) = 52.

2b. Example of the Power Residue Method. As an example, let
us take M = 32, ¢ = 5, and zop = 1. We can then repeatedly use Eq.(1)
to find the entire sequence:

1 = bxo (mod 32) = (5)(1)-(0)(32) = 5
o = bx; (mod32) = (5)(5)-(0)(32) = 25
x3 = bxe (mod32) = (5)(25)-(3)(32) = 29
xg = bxg (mod32) = (5)(29)-(4)((32) = 17

The first 12 numbers in this sequence are:

MISN-0-35 3
5, 25,29, 17, 21, 9, 13, 1, 5, 25, 29, 17

We notice that the sequence repeats after only eight numbers, which would
be much too small a period for the sequence to be of any practical use.
In general, the length of the period depends on all three parameters M,
¢, Tg, so they must be chosen carefully to insure a long period.

2c. Optimum Choice of the Parameters. It may be shown that
to obtain as long a period as possible, the following conditions should be
satisfied for the parameters M, ¢, and xg:

(1) M is one more than the largest integer than can be represented on the
computer: (on a binary computer of b bits, for which each integer is
stored in a single word, we have M = 2b=1,

(2) xo = any odd integer.

In addition, in order that the sequence have the best statistical properties,
it is further recommended that the value of ¢ be close to M'/2, although
the period is not thereby lengthened.

2d. A Pseudorandom Number Sequence. In many applications
involving random numbers, we do not want a sequence of pseudorandom
integers; instead we want a sequence of numbers all of which lie in the
interval from zero to one. This can be achieved by dividing each integer in
the sequence by M — 1, which is the largest possible integer. The sequence
of numbers listed in Table 1 are the first 300 numbers generated using the
power residue method with the constants M, ¢, g chosen as stipulated
in the preceding section. A cursory look at the numbers listed reveals
no repetition of the sequence which means that the period exceeds 300
numbers. Additionally, there is no obvious departure from randomness
evident. For example, there does not appear to be more numbers above 0.5
than below 0.5. Beyond such superficial observations there are a number
of statistical tests that we can apply to pseudorandom number sequences
to see whether they have the same properties of number sequences that
are genuinely random.

MISN-0-35/

Table 1. A Pseudorandom Number Sequence Generated
Using the Power Residue Method.

N=300 M=32768 x0=13 c=199

.07895 .71087 .45836 .21036 .86120 37394
41246 .07657 .23716 .19327 .46031 .59905
20688 .16886 .60192 .77776 .77038 .30070
83728 61272 92761 58879 .16636 10392
67858 .03311 .58922 .25138 .02329 63372
.10581 .05509 .96179 .39055 .71618 .51506
49400 .30363 .42027 .63128 .61998 37297
21812 40373 .33970 .59856 .10971 .83245
.65319 .98041 .09507 91742 .56041 51848
17417 65862 .06137 .21281 .34703 .05606
15610 .06339 .61364 .10978 .84460 .07022
97400 .81976 .12680 .23331 .42808 .18595
.00278 .55266 .97595 .20841 .47252 .02823
.61754 .88714 .53600 .66008 .35289 .22208
19321 44816 .18198 .21329 .44420 .39250
10483 .86077 .28892 .49309 .12143 .16446
72741 74993 23179 12442 75964 .16300
43590 .74065 .38560 .73235 .73376 .01309
.60533 45793 .12534 94183 41881 .33976
.61071 .52678 .82604 37785 .18979 .76800
82702 57219 .86267 66546 .42174 92279
62926 21915 .61022 42961 .48961 42912
39244 .09268 44371 .29533 .76843 91205
49156 .81780 .73815 .88763 .63317 99652
30161 .01944 .86853 .83148 .45885 30754
19761 32267 .20981 75188 .62047 47014
55455 .35246 13706 .27384 .49303 .10929
74743 73382 .02524 .02237 45152 .85003
15122 .09171 .24937 .62249 87097 31730
14096 .05118 .18442 .69915 .12632 13614
09165 .23722 .20542 87738 .59264 93158
37828 .27482 68737 .78216 .64489 .32853
37584 78900 .00522 .03848 .65807 .95209
45933 40471 .53404 .27140 .00717 42717
.00375 .74700 .64879 .10587 .06723 .37883
38414 44084 72448 16691 .21323 43205
97546 .11124 13608 .07950 .82018 21183
15268 .38322 25864 .46867 .26304 .34318
29087 .88177 46715 .95941 91687 .45109

MISN-0-354 o

76501 23185 .13657 .17667 .15659 .16056
95007 .05850 .64196 .74554 .35728 .09659
22105 98675 .35826 .29093 .89392 .88421
95300 .64153 .66051 43791 14145 .14835
52086 .64788 .92370 .81146 47496 .51408
29966 .63079 .52281 .03653 .26939 .60637
66442 21525 .83288 .73821 .89978 .05020
99011 .02628 .22886 .54143 .74108 .47063
65172 .68889 .08579 .07120 .16831 .49260
02426 .82806 .77868 .95257 .55651 .74114
48277 .06876 .68249 .81048 .28062 .84124

3. Statistical Test of Randomness

3a. Frequency Distribution Tests. Tests can help determine the
extent to which the numbers in a pseudorandom sequence are consistent
with a uniform (flat) frequency distribution from zero to one (assuming
this to be their range). Let us divide up the interval from zero to one
into M equal size subintervals and count the number of numbers which
lie in each subinterval. The number of numbers in the j'h subinterval is
designated x;, and the average number in all subintervals is designated Z.
The frequency distribution test then consists in observing to what extent
the deviations d; = x; — = are consistent with the laws of statistics.

3b. Examples of Frequency Distribution Tests. As an illustra-
tion, the first 300 numbers generated using the power residue method
with modulus M = 2'® = 32768, constant ¢ = 199, and seed xy = 13 are
listed in Table 1. The frequency distribution, or histogram, in Fig. 1 shows
the number of numbers in each of the ten subintervals between zero and
one. The figure also indicates the deviations from a uniform distribution
(exactly 30 in each subinterval). The laws of statistics applied to truly
random sample predict that as long as the average number of numbers
in each subinterval is greater than about 25, the probability of finding x
numbers in a subinterval is given by the Gaussian distribution,

f(x) =exp <W> , o=z

202

MISN-0-354 6

10

Figure 1. Frequency distribu-
tion of pseudorandom numbers

0 02 04 06 08 10| of Table 1, in 10 bins.

where o is the “standard deviation.” According to this distribution, the
most likely number of numbers in any subinterval is the average number,

M

and there is a 68% probability of finding = within a one standard deviation
range of the average value: x —o to x40 (which corresponds to deviations
in the range —o to +o0). For an average number z = 30, we find a
standard deviation o = 30'/2 = 5.5 As can be seen in Fig.1, six out of
ten of the deviations are less than 5.5, which is in fairly good agreement
with the expected 68%. Better agreement would be expected if we had
more pseudorandom numbers in the sample. Another test is to compute
the root mean square (rms) deviation for all subintervals

1/2

LM 1/2 LM
drms = <Mzd3> = (M Z(x] —1‘)2> : (2)

For a large number of subintervals we expect d,,,s to approach the stan-
dard deviation o.

10

MISN-0-854 7

In the present example we determine d,.,,s using M = 10 and d; = +5,
dy = +10,--- ,d1p = —9, as indicated in Fig.1. The computed value
drms = 6.7 is reasonably close to the standard deviation, o = 5.5. (Rea-
sonably close is here defined in terms of the expected “deviation of the
deviation” given by: o M'/? = +1). Better agreement would undoubt-
edly be obtained if we had more pseudorandom numbers in the sample.
Frequency distribution tests are not sensitive to the order of pseudoran-
dom numbers in the sequence, only to their relative frequency. For ex-
ample, suppose some number-generation method had produced the same
300 numbers that are listed in Table 1, but in monotonically increasing
order. We certainly would not regard that as a random sequence but we
would still obtain the same random-looking histogram shown in Fig. 1.

3c. Frequency of Strings Test. Some information on the order of
numbers in a sequence can be found by looking for “strings” of various
length. A string of length k consists of consecutive numbers which all
have some specific property. We may, for example, look for strings of
numbers which are all above the mean value (1/2) or all below the mean
value. We can then compare the number of strings of length k£ found with
the number of such strings that would be expected for a truly random
sequence:

expected number of strings of length k = % (3)
3d. No Absolute Tests of Randomness. The difficulty in deter-
mining that a sequence of numbers has no regularities of any kind makes
finding a good random number generator as much an art as a science.
Should a particular sequence of pseudorandom numbers give satisfactory
results for the two preceding tests we would have some confidence in the
method used to generate the sequence. However, it would certainly not
prove that the sequence has all the statistical properties of a truly ran-
dom sequence. Unfortunately there are an unlimited number of possible
regularities that a sequence of numbers might have that would escape
detection in these particular tests. A sequence which appears to be ran-
dom according to several tests may reveal its nonrandom character only
in some special application. Even for a particular technique, such as the
power residue method, the randomness of the sequence may vary accord-
ing to the choice of the constants M, ¢, xg.

11

MISN-0-354 8

4. Distribution Functions

4a. Introduction. Let z represent a random variable that can take on
values in the interval —oco < z < +00. Let f(z) be a piecewise continuous
function such that the probability that the variable has a value between z
and z+dz is given by f(z) dz. In that case, f(z) is called the “probability
density function” (or the “distribution function”) for the variable z. The
fact that z is required to take on some value requires that:

/ O; f()dz =1 (1)

Uniformly distributed pseudorandom numbers in the range zero to one
satisfy the condition:

f(z) =1lfor0<z<1
= 0 otherwise

We wish to find a way to generate pseudorandom numbers r which are
distributed according to other probability density functions. Let F'(z) be
the cumulative distribution function:

Z
F(z) = / 1) d (5)

corresponding to a particular distribution function f(z’) for which we
want to generate a pseudorandom number sequence. F'(z) is equally likely
to take on any value between zero and one. The equation

F(z) = r = uniformly distributed pseudorandom number
may therefore be inverted to solve for z:
z=F"Yr)
The variable z then has the desired distribution function f(z).

4b. Uniform Distribution For An Interval. Given a pseudoran-
dom number uniformly distributed in the interval zero to one, we may
easily find a random number that has a different range a to b. The de-
sired probability density function has the form:

f(z)

¢ (a constant) a<z<b
=0 otherwise

12

MISN-0-354 9

/_O;f(z)dzzl

then requires that ¢ = 1/(b — a). Thus we have for the cumulative distri-
bution function F'(z):

The condition:

zZ—a

zZ
Fe) = [s =5

Whereupon the requirement F(z) = r can be immediately solved for z,
giving:

z=r(b—a)+a (6)
It is clear that the ends of the interval (0, 1) for r correspond to the ends
of the interval (a,b) for z.

4c. Non-Uniform Probability Distributions. As an example of
how pseudorandom numbers can be generated according to a particular
non-uniform probability distribution, consider the function:

f(z) =e** 2>0
=0 z<0

and the corresponding cumulative distribution function found by the re-
quired integration:
1
F [1 _ paz
()= (1)
In this case, the requirement F'(z) = r can also be inverted to solve for z
yielding:
1
z=——In(1l—ar). (7)
a
Thus, the variable z will be distributed according to F(z) = e~%*, pro-

vided r is a pseudorandom number uniformly distributed on the interval
zero to one.

5. Generating Pseudorandom Numbers

5a. Input. The program to generate uniformly distributed pseudoran-
dom numbers first reads numerical values for the parameters NUM, N, X,
and C, where

13

MISN-0-354 10

= number of pseudorandom numbers to be generated

= the modulus

= 0, the seed, the first number in the sequence

= ¢, the constant appearing in the power residue formula

aQ>x = =

5b. Output. The program uses the power residue method to generate
N pseudorandom numbers having a uniform distribution between zero and
one. The program generates the random numbers in sets of six, in order
that each set of six numbers can be printed on a single line. Thus, instead
of a single loop from 1 to N, the program uses two nested loops, the outer
one going from 1 to N/6, and the inner one going from 1 to 6. To obtain
each pseudorandom number from the preceding one, we need to compute
the product, cx (modulo M). This can be done by first computing the new
z from the preceding one using = < cz. Then, to find = (modulo M), we
can use

x—x—M(z/M), (8)

where all operations are carried out according to the rules of integer arith-
metic, i.e., quantities are truncated to the next lower integer after each
arithmetic operation. Finally, to obtain a pseudorandom number between
zero and one, we divide x by M — 1, its maximum possible value. After
the program finds six consecutive numbers, R, R o, ..., Rg, it prints them
on a line and proceeds to the next set of six. When the entire sequence of
N numbers has been printed, the program reads the next data card if any
remain. The sample results shown in Table 1 have been already discussed.
That output can be generated using these values for the parameters:

N M X C
300. 32768. 13. 899.

5c. Handling Overflows on Different Computers. A complication
arises in the way particular computers handle a multiplication in which
the product of two numbers exceeds the largest number that can be rep-
resented on the computer. This results in what is called an overflow. Due
to the way most computers carry out integer arithmetic in FORTRAN,
if there is an overflow, the leading (most significant) part of the result is
dropped. In this case, the result is computed modulo (1,4, + 1), apart
from its sign which may come out negative, if an overflow into the leading
(sign) bit occurs. Thus, by using x < |cz|, we get a result which is auto-
matically computed modulo (I,,4. +1). This implies that the subsequent
computation of z(modulo M) using Eq. 6 can only be correct if 1,4, + 1
is divisible by M. On a binary computer this restricts M to powers of

14

MISN-0-35) 11

two. In other words, if M = 2°, then the possible initial loss of leading
bits (due to overflow) in no way affects the computation of = (modulo M),
in which all but the lower order b bits are dropped. Since overflows may
not affect the sign bit on some computers it is possible that your output
may not look exactly like thatin Table 1. You may find that roughly
half the numbers agree while the other half are equal to the values listed
subtracted from 1.0.

6. Procedures

6a. Length of Period. Run the original version of the program using
the values for ¢, M and xg specified in Table1 and see if your 300 pseu-
dorandom numbers are the same as those in the Table. If some of the
numbers agree and some disagree, see the discussion of overflow handling
on different computers in Sect. 5c. Next, you should modify the program
so that it keeps a count of how many numbers are generated before the
first number in the sequence repeats, thereby determining the length of
the period of the sequence. Also, delete the printout of the individual
numbers.

6b. Frequency Distribution Test. Modify the program so that it
generates a sequence of pseudorandom numbers and keeps a count of how
many numbers lie in each of ten equal subintervals from zero to one. Use
the parameters M = 32768, X = 13 and C' = 199. Make runs of 300
numbers each, and for each run compute the deviations in each subinter-
val from the mean (30), and also compute the root mean square deviation
from the mean. For each run you should print out only the number of
numbers in each of the ten intervals and the rms deviation from the mean.
Modify the program so that the above is accomplished automatically for
a series of 25 runs without needing to enter new parameters each time.
Be sure that the parameter X is not reset each time, otherwise you will
recalculate the same set of random numbers 25 times. After 25 sets of
rms deviations have been found compare them with what would be ex-
pected from the laws of statistics: o = 30/2 = 5.5. You should find that
roughly half of the rms deviations are above this value and half are be-
low. According to theory, the power residue method gives pseudorandom
number series having the best statistical properties when the parameter
C is chosen close to M'/2. Redo the series of 25 runs using a value for
C far from the recommended value (perhaps C = 5). How are the rms
deviations affected by this change?

15

MISN-0-35/ 12

6c. Frequency of Strings Test. A string of length k is defined as
the number of k consecutive pseudorandom numbers which are all either
above the mean value (0.5) or below the mean value. Make 3 runs of 100
pseudorandom numbers each. You should be able to count by hand the
number of strings of length £k = 2,3,--- ,8 in each run and then construct
a table showing the number of strings of length & = 2,3, ...,8 for each
of the 3 runs. Also show in the table the expected number of strings of
length k that would be expected for a truly random sequence based on
Eq3.

6d. Non-Uniformly Distributed Random Numbers. Modify the
program so that it generates pseudorandom numbers having a distribu-
tion function f(z) = e *. This can be accomplished using uniformly
distributed random numbers, r, and then calculating z using Eq. 7 with
a=1:

z=—ln(l—-7)

The variable z will then have the desired distribution, as explained in
Sect. 4c. Modify the program to keep track of how often the pseudoran-
dom number z lies in each of ten successive equal size intervals from 0
to 3. Run the program to generate a sequence of 1000 random numbers
and plot (by hand) a histogram showing the number of z values in each
interval. If you make the plot on semilog paper it will be easy to compare
your histogram with the expected distribution function e™% which should
be a unit slope straight line.

Acknowledgments

Preparation of this module was supported in part by the National
Science Foundation, Division of Science Education Development and
Research, through Grant #SED 74-20088 to Michigan State Univer-

sity.

A. Professional Random Number Discussions

For professional-level material, we recommend that you visit the Web site
of Cambridge University Press, where you will find some 15 coordinated
books and disks for sale under the collective name “Numerical Recipes.”
Go to http://www.cup.org and type ”"numerical recipes” (without the
quotes) in the Search box. The books you will find there (and in libraries)
contain authoritative material, programs, and references to sources in the

16

MISN-0-35/ 13
literature. Some titles are:

1. Numerical Recipes, Press, William H.; Teukolsky, Saul A.; Vetterling,
William T., and others.

2. Numerical Recipes in FORTRAN 90, The Art of Parallel Scien-
tific Computing, Press, William H.; Vetterling, William T.; Metcalf,
Michael Publication (Sept. 1996).

3. Numerical Recipes in C++, Press, William H., Teukolsky, Saul A.,
Vetterling, William T., Flannery, Brian P. (2nd ed., 2002).

4. Numerical Recipes Routines and Examples in BASIC, Sprott, Julien
C., In association with Numerical Recipes Software.

B. Fortran, Basic, C4++ Programs
All programs are at
http://www.physnet.org/home/modules/support_programs
which can be navigated to from the home page at
http://www.physnet.org

by following the links: — modules — support programs, where the pro-
grams are:

m354p1f.for, Fortran;
m354p1b.bas, Basic;
m354pic.cpp, C++;
1ib351.h, needed Library for C++ program;

17

MISN-0-35/ ME-1

MODEL EXAM

1-3. See Output Skills K1-K3.

Examinee:
On your computer output sheet(s):

(i) Mark page numbers in the upper right corners of all sheets.
(ii) Label all output, including all axes on all graphs.

On your Exam Answer Sheet(s), for each of the following parts of items
(below this box), show:

(i) a reference to your annotated output; and
(ii) a blank area for grader comments.

When finished, staple together your sheets as usual, but include the origi-
nal of your annotated output sheets just behind the Exam Answer Sheet.

4. Submit your hand-annotated output from using the power residue
method to generate a pseudorandom number sequence. Be sure it
shows:

a. the degree of agreement with the text table reached on a check run
and reasons for any discrepancy;

b. the number of numbers generated before a repeat of the first number
in the sequence.

c. the count of numbers lying in each of 10 equal subintervals from
zero to one, using the parameters M = 32768, X = 13, C' = 199,
and with 300 numbers in each of 25 runs, where the program prints
out only the number of numbers in each subinterval and the rms
deviations from each subinterval’s mean number of numbers, and a
comparison with what is expected from the law of statistics.

d. for (c) above, a series of 25 runs using a value of C' far from the
recommended value and an interpretation of how the rms deviations
are affected.

5. Submit your hand-annotated output for the frequency-of-strings test.
Make sure it shows:

18

MISN-0-35) ME-2

a. a table containing your hand count of the number of strings of length
2,3, 4,8 for 3 runs each having 100 pseudorandom numbers;

b. in the same table, the numbers expected for a truly random se-

quence.

6. Submit your hand-annotated output for the exponentially distributed
pseudorandom numbers.

a. a hand-plotted histogram showing the number of values in each of
ten successive intervals from 0 to 3, with the total number of values
being 1000.

b. a comparison of the results in (a) to the input exponential distribu-
tion.

INSTRUCTIONS TO GRADER

If the student has submitted copies rather than originals of the computer
output, state that on the exam answer sheet and immediately stop
grading the exam and give it a grade of zero.

19

20

