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DAMPED MECHANICAL OSCILLATIONS
by
Peter Signell, Michigan State University

1. Introduction

la. Damping is Universal. In this module we add damping, or ki-
netic energy dissipation, to the case of simple harmonic motion. This is
important because such dissipation is always present in real mechanical
systems. In addition, we often wish to design the rate of dissipation in
order to damp out unwanted oscillatory motions. An example of this is
the up and down motion of a car wheel after it goes over a bump; without
damping the wheel would continue to oscillate up and down indefinitely.

1b. An Example. In Fig.1 we show a simple damped oscillatory
system consisting of a spring, a mass, and a damping device (a device
that dissipates the kinetic energy of the oscillator). Without the damping
device, the mass will oscillate indefinitely. With the device, its motion
gradually dies out.

Inside the cylindrical damping device there is a piston immersed in
a fluid. This fluid resists the motion of the piston through it. This
resistance can be controlled by varying the viscosity of the fluid or by
otherwise varying its ability to bypass the piston.

Z |
) |
spring (stiffness, k) ! mass, m
N
shockabsorber o
(damping, 4) frictionless surface

Figure 1. A simple damped oscillator.
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lc. Varying the Resistance to
Motion. If we gradually increase the
ability of the damping device in Fig. 1
to resist motion, we get the series of
curves shown in Fig.2. FEach curve
shows the displacement of the oscillator
from its position of static equilibrium as
a function of time.

The first curve is with no damping.
Succeeding curves are for increasing re-
sistance of the damping device to mo-
tion, such as by making the fluid go
from water to light oil to heavy oil to
thick molasses (the quantity v is a mea-
sure of this increasing resistance). Note
that a point is reached beyond which
there are no oscillations. This transi-
tion point, called the critical damping
point, occurs at v = 27 fp.

1d. Prospectus. In the rest of this
module we will first treat each forces
acting on the mass separately, then
combine the forces. This means we
will review the restoring force that pro-
duces simple harmonic motion, then in-
troduce the damping force and see what
it does to the motion. In the process
we will make quantitative the ideas we
have discussed. This will provide an
understanding of a wide variety of cases
and devices. It will also lay the ground
work for considering damped driven os-
cillatory motion, wherein energy is con-
tinually fed into the system as well as
being dissipated from it. The addi-
tion of the driving force is treated else-
where.®

%See “Damped Driven Oscillatory Motion,”
(MISN-0-30).

N

y=20

Fig.2. (see text).
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2. The Forces

2a. The Restoring Force. The restoring force is the force that, at
all times, accelerates the oscillator back toward the position of static
equilibrium. If the displacement is sufficiently small for the case at hand,
the restoring force will be linear to a good approximation so we write it:

F=—kx. (1)

A force that obeys Eq. (1), with an interpretation of k appropriate for that
force, is called a “Hooke’s law force.” If it is the only force acting on a
mass, the mass will undergo Simple Harmonic Motion (hereafter referred
to as “SHM”):

x(t) = x(0) cos (wot + ) . (2)

> Substitute Egs. (2) and (1) into F' = ma and show that the equation is

satisfied if the constant wg is equal to the correct combination of m and
k. Help: [S-1]1

2b. The Damping Force. A “damping force” is one that, acting
by itself, (smoothly) stops motion. For example, friction acting on a
horizontally coasting bicycle or car is a damping force because it gradually
brings the vehicle to a halt.

A damping force must oppose the velocity in order that the resul-
tant acceleration is a deceleration. This means that, mathematically,
the damping force has the opposite sign to the velocity. The damping
force cannot be a constant since that would decrease the velocity through
zero and then cause it to increase in the direction of the force, whereas
the damping force (by itself) is to make the motion stop and then stay
stopped. If the damping is sufficiently small for the case at hand, it is
likely to be linear to a good approximation:

F=-\. (3)

If this is the only force acting on a mass, the velocity will decrease to zero
exponentially in time:

v(t) = v(0) exp (=1). (4)

> Substitute Egs. (4) and Eq. (3) into F' = ma and show that the equation
is satisfied if the constant ~ is equal to the correct combination of A and

Mf you need help in this, see sequence [S-1] in this module’s Special Assistance
Supplement.
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m. Help: [S-2] Since the differential equation is second order and homo-
geneous, this solution is the unique solution (apart from transformations
to mathematically equivalent functions).

> Visualize Eq. (4) as a graph and think of how the curve on it changes
as the damping constant A and mass m are increased and decreased.
Help: [S-3]

> Integrate Eq. (3) to give: z(t) = x(0) — [v(0)/~] exp (—t).

2c. The Two Forces Together. A linearly-damped linearly-restored
oscillator is one in which the force acting on the mass is the sum of Egs. (1)
and (2):

F=—kx — ). (5)

In this case we will write the solution differently depending on whether
X is smaller, equal to, or larger than the combination 2v/mk. These
three cases are referred to as “underdamped,” “critically damped,” and
“overdamped.” We could write a single solution for all three cases but
it would involve complex variables. To avoid that, we separate the three
cases:

underdamped: X < 2vmk
critically damped: X\ = 2vmk
overdamped: A > 2v/mk

> Note that the progression in the names matches the progression in the
size of the damping constant A.

3. The Damped Oscillator Solutions

3a. The Underdamped Solution. For the underdamped case, the
solution to F' = ma can be written in the form:

z(t) = Ae 7 cos (wt + ). (6)

Here A and « must be fixed by two known values of x, or its derivatives,
at one or two specific times. For example, A and « could be fixed by
knowing z at two different times or by knowing z at a specific time and
the velocity v at a specific time.

> Substitute Eq. (6) and Eq. (5) into F' = ma and show that the equation
is satisfied if the constants v and w are equal to the correct combinations
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of k, A\, and m: Help: [S-4]

where we define the undamped frequency, wg, as usual:

wo =V k/m. 9)

Note that the condition for the underdamped case can be written: A < wy.

> Sketch a graph of Eq. (6). Note that the frequency of the oscillations, w,
remains constant in time but that the amplitude of the oscillations dies out
exponentially. To make the sketch, first construct positive and negative
decreasing exponential functions on the graph using dashed lines. The
result should be a graph that is symmetric under reflections about the time
axis. Now draw the constant-frequency exponentially-dying oscillations
inside the dashed-lines “envelope.” Help: [S-5]

3b. The Overdamped Solution. For the overdamped case, v > wy,
the solution can be written in the form:

z(t) = A e~ L Bl e= (=t (10)

where v and wg are as before and:

W=/ = Wi (11)

As in the underdamped case, A’ and B’ must be fixed by two known values
of z(t) and/or its derivatives. Eq. (10) can be shown to be mathematically
equivalent to Eq. (6).2

> Sketch a graph of Eq.(10). Note that the curve is just the sum of
two decaying exponentials. To the inexperienced eye, the sketch will look
more or less like a single decaying exponential.

> Make sketches of what happens to the curve as you increase the damp-
ing constant to make it farther and farther from “critical” damping.

3c. The Critically Damped Solution. For the critically damped
case, w = w’ = 0. Using this, we can create a simpler form of Eq. (6) or

2If you are interested, see this module’s Appendiz.
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(10) by letting w or w’ approach zero in either of those equations.® This
gives:
z(t)= (A" + B"t)e . (12)

Again, A” and B” must be fixed by two known values of z(t) and/or its
derivatives.

> Sketch a graph of Eq. (12).

3d. The Transition. In Fig.2 we have plotted z(t), Egs. (6) and (10),
for increasing values of the damping constant A. The critically damped
case is not shown but corresponds to: v = wy = 27 fy. We have chosen
the constants such that a = 0.

Think of the system shown in the figure as the wheel of a car that
has just gone over a sharp bump. If the shock absorber is worn out and
hence inoperative, the damping is zero and the wheel oscillates up and
down as in the first figure. If the shock absorber is almost worn out, so
the damping is small, the wheel responds as in the next figure. If the
shock absorber produces too much damping, the wheel takes a long time
to come back to the equilibrium position, as shown in the last figure.
Obviously, critical damping is close to what one wants. It is also obvious
that the shock absorbers must be matched to the weight of the car and
to the stiffness of its springs.

Acknowledgment

The author wishes to thank Jules Kovacs and Julie Junttila for help-
ing to put together a study guide for a previous version of this module.
Production was supported in part by grants from the National Science
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Notes for Those Interested

a. The Equivalence of Egs. (10) and (6). To see that the two
equations are equivalent, note that w? = —w? so w’ = iw where i = v/—1.
Make this substitution and finish the conversion using e** = cos z+isin x.

Help: [S-6]

b. Derivation of Eq. (12). To show that Eq.(12) is the limit of
Eq. (6) as w approaches zero, use the approximation: e* ~ 1+ z for small

3If you are interested in the details, see this module’s Appendiz.

10
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x. Help: [S-7]

c. Uniqueness of the solution. A fundamental existence theorem
in mathematics guarantees that there is only one solution to F' = ma for
a force that is linear in x, v, and/or a, providing that force contains no
higher derivatives and providing the solution contains two independently
adjustable constants. Thus any solution we find that satisfies F' = ma,
with the restrictions noted, is the only solution. That is why we we can
show that the three forms are equivalent.

Although the solution is unique in a mathematical sense, it can also
be thought of as a two-parameter family of solutions, the two parameters
being the two adjustable constants. For example, consider the plotted
curve for an underdamped case, showing oscillations inside a decaying-
exponential envelope. Assume the value zero for the phase a so the curve
is at its highest value at the origin. Now start continuously increasing «
and watch as the curve changes shape, going through complete oscilla-
tional cycles down and up the vertical axis at the origin as a continues
to increase. Of course the constant A can also be varied and together the
two variations produce the two-parameter family of solutions for fixed A,
k, and m.

11
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PROBLEM SUPPLEMENT

1. A meter needle is to be designed so that its amplitude of vibration
will drop by 99.0% in three oscillations, hence be unobservable after
that. If the frequency of oscillation of the needle is 2.00 per second,
determine the design damping constant ~.

2. An engineering student observing the diving board at the swimming
pool notices that the vibrating board’s amplitude changes from 14.0 cm
to 8.00 cm in 0.800 seconds. Determine the damping constant v of the
board.

Brief Answers:

1. v=13.07/s
2.y = 0.700 /s

12
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SPECIAL ASSISTANCE SUPPLEMENT

(from TX-2a)

F = ma becomes:

—kx = m(d?z/dt?)z = m[—2(0)w? cos (wot + a)] = —mwiz .

We set wi = k/m, substitute it in on the right hand side, and the
equation is satisfied.

(from TX-2b)

f = ma becomes:
v =m(d/dt)v = m[—v(0)yexp (—t)] = —m~yv.

We set v = A/m, substitute it in on the right hand side, and the equation
is satisfied.

(from TX-2b)

As 7 increases the curve falls off more sharply.

(from TX-3a)

x = Aexp —7t cos (wt + «)

Differentiate x to get:

v = —yAexp —vtcos (wt + a) — wAexp —vtsin (wt + «)

hence:

v = —yx —wAyexp —ytsin (wt + «)

hence:

wAexp —vtsin (wt + @) = —v —yx.

Now differentiate v to get:

a=—yv+ wAyexp —vtsin (wt + a) — w?Aexp —t cos (wt + )
or:

a=—27)v— (v* +w?)x.

Then f = ma becomes:

—kx — Xv =ma = —(2ym)v — [m(y? + w?)]z.

We set v = A\/(2m) and w? = w3 —+? and the equation is satisfied (with
wi =k/m).

13
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(from TX-3b)

Step 1: Step 2:

(from Appendiz-a)

Compare the definitions of w and w’ and you will see that: w’ = iw. We
substitute that into Eq. (9) and find:

T = Aleffytfiwt + B/ef'ytJriwt .

Now et = ¢ e hence:

T = e—vt[Ale—iwt + B/e+iwt] .

We now set A’ = Ae=*/2 and B’ = Aeti/?

so we get: = Ae—~t cos (wt 4+ «) which is just Eq. (6).

Note: cosz = (€' + %) /2.

(from Appendiz-b)

Write Eq. (9) as:

x=e T (Ale W't 4 Bletw't),

We now make w’ small so e*¥'t ~ (1 +w't).

Substituting this, we get:

r=e A (1-wt)+ B'(1+u't)],

or:

x=e "[(A+B)+twB —uwA).

We now set A” = A’ + B and B” = w/'(B' — A’) so we get:

x =e "(A” + B"t), which is just Eq. (12).

14
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MODEL EXAM

1. See Output Skills (Knowledge) K1-K4 on this module’s ID Sheet.

2. An engineering student observing the diving board at the swimming
pool notices that the vibrating board’s amplitude changes from 14.0 cm
to 8.00 cm in 0.800 seconds. Find the damping constant « of the board.

Brief Answers:

1. See the text and Special Assistance Supplement.

2. See Problem 2 in the Problem Supplement.
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