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TEMPERATURE AND PRESSURE

OF AN IDEAL GAS: THE EQUATION OF STATE

by

William C. Lane
Michigan State University

1. Introduction

1a. Statistical Methods are Necessary for Crowded Systems.
When dealing with the mechanics of systems of very large numbers of par-
ticles it is necessary to use statistical methods. It’s obviously impossible
to treat individually each of the molecules of a gas consisting of 1020 par-
ticles, even if you think you know the laws of physics which determine the
motion of each of these particles. Even the most sophisticated computers
currently conceived would be hopelessly swamped trying to keep track of
the forces acting on each of the 1020 particles moving about in the gas, as
well as the position, velocity, and acceleration of each. Actually, even if
you could obtain all of this detailed information, only summaries or aver-
ages of the various quantities would have useful meaning. For this reason
statistical mechanical methods are not only the sole practical way, they
are the most useful way of dealing with the dynamics of such systems.

1b. Microscopic Descriptions Yield Macroscopic Properties.
The averages of the kinematical and dynamical quantities obtained by sta-
tistically describing a microscopic system must be related to measurable
quantities. For gases these usually are the volume1 occupied by the gas,
the pressure,2 temperature, and the number of molecules involved, which
together determine the state of the system. For an ideal gas, the sim-
plest model of intermolecular forces is assumed: there are no interactions
between the molecules unless their centers happen to coincide, in which
case they bounce off one another like hard spheres, and the molecules are
assumed to be point masses. For such a model, the equation of state,
that is, the relation between the measurable quantities (pressure, volume,
temperature), can be derived in a straightforward way once temperature
and average pressure are defined.

1For a definition of this term see this unit’s Glossary.
2For a definition of this term see this unit’s Glossary.
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2. Temperature of an Ideal Gas

2a. Macroscopic Viewpoint. Most of us use the macroscopic view-
point of temperature in our daily lives. To us, “temperature” has always
been simply a measuring scale to indicate how “hot” or how “cold” some-
thing is. We know that temperature is measured with a device known
as a “thermometer.” We know that “heat” travels from points of high
temperature to points of low temperature. However, such a viewpoint is
of limited usefulness in describing the temperature of a system of many
particles. Before we proceed we must develop a microscopic picture of the
system.

2b. Microscopic Viewpoint: An Ideal Gas. In order to illustrate
the microscopic view of a large system of particles, we will choose the
simplest system we can imagine, an ideal gas. An ideal gas is one in which
the intermolecular forces are negligible, and the molecules can be treated
as point masses which obey Newton’s three laws of motion. The energy of
the gas molecules is entirely translational kinetic energy. Temperature is
defined as a quantity directly proportional to the average kinetic energy
of a molecule, in the center of mass frame of reference.

For a system of N particles whose masses are m1, m2, m3, . . .mN

and whose velocities are ~v1, ~v2, ~v3, . . .~vN , the average kinetic energy of
the particles is:

Ek,av =
1

N

[

N
∑

i=1

1

2
miv

2
i

]

. (1)

If all the particles have the same mass m, then Eq. (1) becomes:

Ek,av =
1

2
m

[

1

N

N
∑

i=1

v2
i

]

.

A quantity known as the “root mean square” speed of the particles, vRMS,
is defined as:

vRMS =
√

v2
RMS =

√

1

N
(v2

1 + v2
2 + . . . + v2

N ) =

√

√

√

√

1

N

N
∑

i=1

v2
i . (2)

In the “RMS” notation, the average kinetic energy of a particle in this
system of N identical particles, each with mass m, is:

Ek,av =
1

2
mv2

RMS . (3)
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2c. Thermal Equilibrium. For Eq. (3) to be of any use in defining
temperature, we must require that the gas molecules have a completely
random motion, a condition known as “thermal equilibrium.” At thermal
equilibrium, the system has no “memory” of how it was prepared and
the only forces acting on the particles are the contact forces felt during
collisions with the walls of the gas container and with other molecules. If
the system is at thermal equilibrium, the temperature may be defined as
a quantity directly proportional to the average kinetic energy of the gas
molecules:

Ek,av =
1

2
mv2

RMS =
3

2
kT.

so:

T =
mv2

RMS

3k
. (4)

The constant k is called “Boltzmann’s constant.” The numerical value of
k is 1.3805 × 10−23 J/K, where K is a unit of temperature on the Kelvin
absolute temperature scale. On this scale, ice at normal atmospheric pres-
sure melts at 273.15 K, and water at normal atmospheric pressure boils
at 373.15 K. If the system is not in thermal equilibrium then temperature
is not a meaningful property of the system.

2d. Other Temperature Scales. Several other scales are commonly
used for measuring temperatures and will be defined. The Celsius (for-
merly centigrade) temperature scale is defined by:

TC = (TK − 273.15) ◦C , (5)

where TC is the Celsius temperature, TK is the Kelvin temperature, and
the Celsius unit of temperature is a “degrees Celsius.” A change in tem-
perature of 1 K is exactly equal to a change in temperature of 1 ◦C. On
this scale, water boils at 100 ◦C and freezes at 0 ◦C. Also used, especially
in day-to-day life, is the Fahrenheit temperature scale. The conversion of
temperature from a Celsius scale to a Fahrenheit scale is quite straightfor-
ward and can be easily derived without memorizing formulas. Realizing
that the two temperature scales are linearly related, we may write

TF = a(TC) + b , (6)

and merely solve for a and b. This can be done by evaluating Eq. (6)
at two temperatures where both the Fahrenheit and Celsius values are
known: (1) at the freezing point of water: 32 ◦F = a(0 ◦C) + b; and (2)
at the boiling point of water: 212 ◦F = a(100 ◦C) + b. The first relation
determines b as 32 ◦F, and by using this value in the second relation, a is
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seen to be 1.8 ◦F/ ◦C. Converting 1.8 to its fractional equivalent of 9/5,
we obtain:

TF = (9/5)TC + 32 ◦F , (7)

equivalently:
TC = (5/9)(TF − 32 ◦F). (8)

3. Average Pressure of an Ideal Gas

3a. Macroscopic Definition of Pressure and its Units. For
macroscopic systems such as a fluid, pressure is defined as the force per
unit area exerted by the fluid on some surface:

P =
F

A
(9)

where F and thus P may vary continuously over A, the surface area.3

units of pressure in the MKS system are newtons per square meter ( N/m2)
or joules per cubic meter ( J/m3). Other frequently used units of pressure
include the atmosphere (atm), pounds per square inch ( lb/in2 or psi),
pounds per square foot ( lb/ft2) and millimeters of mercury (mm Hg or
torr). The last unit of pressure is based on a method of specifying air
pressure by means of measuring the height of a column of mercury in a
barometer. The conversion factors between the various systems of units
listed above are:

1 atm = 1.013 × 105 N/m2 = 760 torr

1 lb/in2 = 144 lb/ft2 = 6891N/m2

3b. Microscopic Definition of Average Pressure. For a system
consisting of discrete microscopic gas molecules, we must think in terms
of the average pressure exerted by the molecules as they collide elastically
with the walls of their container. By Newton’s second law, the average
force exerted by one object on another during a collision is

~Fave =
∆~p

∆t
, (10)

where ∆~p is the momentum exchanged during a collision time interval of
∆t. We will use this average force to calculate the average pressure of an
ideal gas in some container of volume V .

3For a further discussion see “Archimede’s Principle; Bernoulli’s Theorem” (MISN-
0-48).
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an ideal gas.

3c. The Statistical Model of the System. We are interested in
systems that have reached thermal equilibrium, and at thermal equilib-
rium the gas molecules are in completely random motion. Also, in order
for statistical mechanics to be valid, our system must contain a very large
number of molecules. Random motion implies that the molecules are
moving in all directions, and the large number of molecules implies both
that all directions and allowable speeds4 are represented and also that the
randomness is maintained. There is no net movement in any direction.

3d. Calculating Statistical Averages. When we calculate macro-
scopic quantities like pressure and temperature, we are dealing with aver-
ages over the many molecules in the system. For ease in computation we
can assume from the beginning that all of the molecules move with the
same average speed. In order for the net velocity to be zero, then, the
number of molecules moving in any one direction must equal the number
of molecules moving in the opposite direction. In particular, we could re-
solve the velocity of each molecule into its three components along the x,
y and z axes and use the fact that the sum of the components along any
one of the six positive and negative axes must equal the sum along each
of the other five. Equivalently, however, we could consider the molecules
to be traveling only in the direction of one or another of the axes, with
the condition that the number of molecules moving in any one direction
must equal the number moving in any other direction. Thus for the sake
of calculating macroscopic quantities, we may make the assumption that
all of the molecules move with the same average speed and 1/6 of them
move along each of the six positive and negative axes. Temperature is de-
fined directly in terms of the molecules’ RMS speed, so it is this “average
speed” that we use.

4Allowable speeds are those consistent with the temperature of the system. See
“Energy Distribution Functions: Boltzmann Distribution” (MISN-0-159).
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3e. Derivation of Average Pressure. The average pressure of an
ideal gas may be derived by considering an imaginary system consisting
of a rectangular parallelopiped with side lengths a, b, and c, oriented as
shown in Fig. 1. N hard spheres (atoms) of negligible size are contained
inside this box. The atoms are moving randomly, and after thermal equi-
librium is established we can consider that the RMS speed of these atoms
remains fixed. A particular atom moving in the positive y-direction with
speed vRMS is instantaneously at a distance L from the shaded face of
the volume. It will strike the face in time ∆t given by:

∆t = L/vRMS (11)

In that time, all of the other atoms moving in the positive y-direction that
were within the sub-volume defined by L and the shaded face (of area A)
will also strike this face. By the law of conservation of momentum, each
atom will impart a momentum 2mvRMS to the wall. The number of these
collisions in time ∆ t is proportional to the subvolume:

Ncollisions =
LA

V

N

6
(12)

where N/6 is the total number of atoms moving in the +y-direction, and
(LA/V ) is the fraction of the total volume V in which these atoms are
contained. The total momentum exchanged with the wall is therefore:

(∆p)Total = Ncollisions (2mvRMS) =
1

3

N LAmvRMS

V
. (13)

Substituting this expression for the momentum transferred to the wall of
the container into Eq. (10), we obtain:

Fave =
∆p

∆t
=

1

3

N LAmvRMS

V
L/vRMS

or

Fave =
N Amv2

RMS

3V
. (14)

Thus the average pressure of the gas is:

P =
1

3

N

V
mv2

RMS . (15)
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4. Equation of State of an Ideal Gas

4a. Definition of State. In general, the state5 of a system is defined
by specifying a limited number of properties of the system and leaving
other properties unspecified. The state of a gas is completely specified by
a knowledge of three of its macroscopic properties: pressure, temperature
and volume.6 In formal mathematical language, the equation can be
written:

F (P, T, V,m) = 0 . (16)

By combining the expression for the pressure and temperature of an ideal
gas and eliminating the term mv2

RMS, we may express the equation of
state of an ideal gas as:

PV = NkT (17)

where P is the average pressure of the gas, T is the temperature of the
gas, V is the volume of the gas container, N is the number of molecules
(or atoms) of the gas, and k is Boltzmann’s constant.

4b. Alternate Forms of the Equation of State. The equation of
state of an ideal gas can be expressed in several other forms, each of which
involve pressure and temperature. We can express the equation of state
in terms of the number of moles of gas by using the relation

n =
N

NA

, (18)

where n is the number of moles of gas, N is the number of molecules of
gas, and NA is Avogadro’s number, 6.023 × 1023. Thus N = nNA, so

PV = n(NAk)T = nRT , (19)

where we have introduced a new symbol R, called the “ideal gas constant”:

R =
(

6.023 × 1023 mole−1
)

×
(

1.3805 × 10−23 J/K
)

so
R = 8.3143 J/(K mole) . (20)

Another form of the equation of state can be obtained by converting the
number of moles of gas to the equivalent mass using the expression:

n =
m

M
, (21)

5The term “state” as used here implies an equilibrium state: temperature and
pressure are the same at all points.

6An equation of state refers to a particular gas; the mass of the gas or the number
of gas molecules present is implicitly specified in such an equation.
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where m is the mass of the ideal gas in its container and M is the molecular
weight of the gas. Substituting Eq. (21) into Eq. (19) and dividing each
side by V we obtain:

P =
mRT

MV
= ρRT/M , (22)

where ρ is the density of the gas.

4c. Using the Equation of State. The equation of state is a powerful
tool we can use to calculate the unknown macroscopic properties of an
ideal gas as it changes its state. For any particular system, we identify
which quantities are constant in time and which are variables. We then
rearrange the equation of state to get all variables on one side of the
equality and all constants on the other side. Since the “constants” side of
the equation is certainly constant in time, the particular combination of
variables on the other side of the equality must also be constant in time.

4d. Example: A Closed System. We illustrate use of the equation
of state by treating an ideal gas system that is “closed,” i.e. for which no
molecules enter or leave the container. Then N is the constant in Eq. (17)
so we rewrite that equation this way:

PV

T
= Nk = nR = constant. (23)

Thus the pressure, temperature and volume of the gas at one time, called
state 1, are related to the corresponding properties at another time, called
state 2, by the relation:

P1V1

T1

=
P2V2

T2

= constant. (24)

Note that we do not need to know the constant N (or n) if only one
property is unknown in one of the states. For example, given the pressure
and volume in both states and the temperature in state 1, the temperature
in state 2 is:

T2 = T1

(

P2

P1

) (

V2

V1

)

.

Note that most of the units will cancel so a conversion of units may not
be needed. Also note that absolute (e.g. the Kelvin scale) temperatures
must be used with the equation of state.
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Glossary

• absolute temperature scale: a temperature scale that assigns a
temperature of zero to the lowest possible state of molecular energy.
The Kelvin scale is an example of an absolute temperature scale.

• Boltzmann’s constant: a constant, denoted by k, used to relate
temperature to molecular energy. For an ideal gas, Ek,ave = (3/2) k T .

• Celsius: a temperature scale with increments the same size as the
Kelvin scale but which assigns zero temperature to the freezing point
of water. The boiling point of water is assigned to 100◦C. This range of
temperatures defines the size of a degree Celsius. It is not an absolute
scale of temperature.

• density: the mass per unit volume at any space point. It is often writ-
ten ρ(x, y, z) or, equivalently, ρ(~r). The density of pure water at 4 ◦C
is ρ = 1gram/ cm3 down to depths where pressure causes compression
and a rise in density.

• equation of state: a mathematical expression which includes a lim-
ited number of macroscopic properties of a system and completely spec-
ifies the system.

• Fahrenheit: a temperature scale used commonly in English-speaking
countries. This scale assigns the temperature 32 ◦F to the freezing point
of water, and 212 ◦F to water’s boiling point. It is not an absolute scale
of temperature.

• ideal gas: a system composed of particles which have negligible vol-
ume and interact with each other only by collisions. The particles have
no structure and function as simple point masses. Real gases behave
like ideal gases at sufficiently low pressures and densities.
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• Kelvin: an absolute scale of temperature with increments the same size
as those of the Celsius scale. On this scale, water freezes at 273 K and
boils at 373 K.

• mole: an “Avogadro’s number” of anything, i.e. 6.023 × 1023 of
anything; like a dozen eggs or a gross of oranges, we say “a mole of gas
molecules.”

• root mean square (RMS) speed: the speed of a particle in a
statistical system which has a kinetic energy equal to the average kinetic
energy of the system. The RMS speed is found by averaging the square
of all particle speeds in the system and taking the square root of this
mean.

• temperature: a macroscopic property of a system which may be
statistically related to the average kinetic energy of the system (or the
root mean square speed).

• thermal equilibrium: the state of a statistically described system
where the motion of the particles is completely random and temperature
is a well defined quantity.

• thermometer: a device used to measure temperatures. Thermome-
ters operate via a variety of mechanisms whereby some property of a
material which depends on temperature is in thermal contact with the
system. Examples include the thermal expansion of liquids and gases
and the electrical resistivity of a wire.

• volume: the amount of space inside a closed surface, measured in
cubic length units. For example, the volume inside a cube with di-
mensions 2m × 2m × 2m is 8m3 (“eight cubic meters”). The volume
enclosed by a sphere of radius 3m is 36π m3.
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PROBLEM SUPPLEMENT

Note: Problems 12 and 13 also occur in this module’s Model Exam.

1.
y

x

q1 q3

q2

v1

v2

v3

v1 = 40 ft/sec, θ1 = 60◦

v2 = 20
√

2 ft/sec, θ2 = 45◦

v3 = 20(
√

3 − 1) ft/sec, θ3 = 90◦

An x-y coordinate system is set up at one of the corners of a billiard
table in the plane of the table. At a given instant, three billiard balls
are observed to be moving with the speeds and directions indicated
in the sketch above. The dotted lines are parallel to the x-axis.

a. What is the average value of vy, the y-component of the velocity?

b. What is the average value of vx?

c. Calculate the RMS value of vx for these billiard balls. Help: [S-4]

d. Calculate the RMS value of vy.

e. Calculate the RMS value of v.

f. If the weight of each billiard ball is one pound (lb), what is the
average kinetic energy of these billiard balls? Help: [S-1]

2. Consider a simple system of two particles, each of mass M . First we
have them in a situation labeled case A:
~v1 = +(3m/s) x̂
~v2 = −(3m/s) x̂.
Then we have them in a situation labeled case B:
~v1 = −(53m/s) x̂
~v2 = −(47m/s) x̂.
In which case does the system have a higher temperature?
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3. If an ideal gas with molecules the same mass as molecular hydrogen
have an RMS speed of 6.08 m/s, what is the temperature of the gas?
What should be the RMS speed of this ideal gas for the temperature
to be nearer to room temperature, say 300 K? Help: [S-2]

4. Suppose we have two gases, both consisting of the same total number
of particles, both ideal, both with the same average kinetic energy.
One of the gases consists of N particles with the same mass as di-
atomic hydrogen; the other consists of N particles with the mass of
the electron. Which gas would be at the higher temperature?

5. Suppose that, in Problem 4, one gas (H2) consisted of N particles, the
other gas (electrons) consisted of 100 N particles, while all the other
properties mentioned in Problem 4 were the same. Which gas would
be at the higher temperature?

6. If the RMS speed of the molecules of a certain gas is kept constant
while the number of molecules in the gas is doubled, what happens
to each of the following quantities? (Assume the gas is ideal and its
is volume constant.)

a. the average kinetic energy;

b. the temperature of the gas;

c. the pressure of the gas.

7.

q

q x̂

ŷ

v

v

A hard sphere of mass M makes an elastic collision with a
rigid wall. Before the collision the velocity of the sphere is ~v, making
an angle θ with the x-direction. After the collision its speed is still v,
but the velocity ~v makes an angle θ reflected about the x-axis from
its incident direction, as shown in the sketch.

a. What is the x-component of the incident velocity in terms of v and
θ?
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b. What is the x-component of the velocity of the rebounding sphere?

c. What is the y-component of the incident velocity?

d. What is the y-component of the velocity of the rebounding sphere?

e. What is the change in the x-component of the velocity as a result
of the collision?

f. What is the change in the y-component of the velocity as a result
of the collision?

g. What is the change in momentum of the sphere?

h. During an interval of time, ∆t, which includes the interval during
which the sphere rebounded from the wall, what is the average
force that the sphere exerts on the wall?

i. Suppose there are many such spheres in this region making colli-
sions with the wall, all with incident x-component of velocity −vx.
If these spheres are distributed so that there are Nx of them per
unit length of distance in the x-direction, all headed left, how many
of these strike the wall per second? How many strike the wall in
time interval ∆t? What is the average force exerted on the wall?

8. Room temperature is usually taken to be 20 ◦C. Calculate the corre-
sponding Fahrenheit value of this temperature.

9. A normal human body temperature is usually assumed to be 98.6 ◦F.
What is this temperature in degrees Celsius?

10. Scuba divers use tanks of compressed air strapped to their backs to
breathe underwater. A regulator attached to the tank feeds air to the
diver at the same pressure as the ambient water so that pressures will
be balanced throughout the diver’s body. The pressure of the water is
given by: P = P0 +ρgh, where P0 is atmospheric pressure at sea level
(P0 = 1atm = 1.013 × 105 N/m2), ρ is the density of water, g is the
acceleration of gravity, and h is the depth of immersion. As a short-
hand method, divers use the fact that each 33 ft of depth increases the
pressure by 1 atmosphere of pressure above atmospheric pressure. If a
scuba diver were to ascend from a 33 foot depth to the surface without
exhaling (i.e. holding his breath) calculate the change in volume of
the air in his body, assuming air to be an ideal gas. Assume that the
temperature of the air remains the same.

11. When you fill up your car’s tires with air at the service station, you
usually set the pressure at some fixed value established by the man-
ufacturer. However during subsequent driving the tires heat up due
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to friction with the road surface. Assuming the tire has no leaks
and is not changing shape appreciably, calculate the new tire pressure
when the temperature of the air in the tires increases by 10 ◦C. As-
sume that the tires initially were inflated to 25 psi at a temperature
of 68 ◦F. Help: [S-3]

12. Four particles, each of mass 0.25 kg, have these velocities:
~v1 = (3m/s) x̂ − (7m/s) ẑ
~v2 = (4m/s) ŷ
~v3 = (7m/s) ẑ
~v4 = −(3m/s) x̂ − (4m/s) ŷ

a. Find the RMS speed of the particles in this system.

b. Calculate the average kinetic energy and “temperature” of the sys-
tem, assuming it is in thermal equilibrium.

13. An air cylinder initially at room temperature (68 ◦F) contains 5.0 kg
of gas at a pressure of 2000 psi. The cylinder then is attached to a
compressor and filled to its maximum capacity with a final pressure
and temperature of 3000 psi and 77 ◦F. Calculate the additional mass
of air added to the cylinder, assuming air is an ideal gas. Help: [S-5]
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Brief Answers:

1. a. Zero

b. Zero

c. 16.33 ft/s

d. 24.59 ft/s

e. 29.52 ft/s

f. 13.61 ft lb

2. Both have the same temperature. In case B, the center of mass of the
particles has a velocity of −50 m/s x̂, so that in the center of mass
frame of reference both particles have speed 3 m/s.

3. 3.0 × 10−3 K; vRMS = 1.93 × 103 m/s at T = 300K.

4. T is the same because Ek,ave is the same.

5. T is the same because Ek,ave is the same.

6. a. It remains the same.

b. It remains the same.

c. It is doubled.

7. a. −v cos θ

b. +v cos θ

c. +v sin θ

d. +v sin θ

e. +2v cos θ

f. Zero

g. (2Mv cos θ) x̂

h. (−2Mv cos θ/∆t) x̂

i. Nxvx; Nxvx∆t; (−2MNxv2
x) x̂

8. 68 ◦F

9. 37.0 ◦C

10. The gas doubles in volume.
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11. 26 psi (a change of 1 psi).

12. a. 6.08 m/s

b. Ek,ave = 4.62 J, T = 2.23 × 1023 K

13. 2.4 kg
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from PS, problem 1f)

The mass of the billiard balls may be related to the weight by recalling
the relation W = mg. If British units such as “lbs” are used in a
calculation, use g = 32 ft/s2. Thus if an object has weight W = 1 lb,
then it has mass m = (1/32) lb s2/ ft.

S-2 (from PS, problem 3)

Hydrogen is a diatomic gas, so its molecular mass is very nearly the
mass of 2 protons, i.e. m = 2.0159 u, and 1 u (atomic mass unit)=
1.660 × 10−27 kg.

S-3 (from PS, problem 11)

Remember that to use the equation of state you must specify tempera-
ture on an absolute scale, e.g. Kelvin.

S-4 (from PS, problem 1c)

If you really can’t figure out what to do, follow a professional’s way of
dealing with such situations:

• Review just what RMS means.

• Reread the description of RMS in the text and in the Glossary.

• Think about the words the abbreviation RMS stands for.

• Notice that the words describe exactly what you do mathemati-
cally!

• Do what you think might work in a case with a known answer.

S-5 (from PS, problem 13)

The initial and final volumes cancel. The temperatures must be changed
to Kelvin. The pressure units cancel.
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MODEL EXAM

k = 1.3805 × 10−23 J/K
R = 8.3143 J/(K mole)

1 atm = 1.013 × 105 N/m−2 = 14.70 lb/in2

1. See Output Skills K1-K4 in this module’s ID Sheet. One or more of
these skills, or none, may be on the certifying exam.

2. See this module’s Problem Supplement, Problem 12.

3. See this module’s Problem Supplement, Problem 13.
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