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DERIVATION OF ORBITS IN

INVERSE SQUARE LAW FORCE FIELDS

by

Peter Signell

1. Introduction

The derivation of the elliptical orbits of the planets constitutes one of
the greatest triumphs of Newtonian Mechanics. Perhaps you can imagine
Newton’s excitement when he completed his derivation and realized that
for the first time in history the motions of the other planets and the earth
would now be understood. In this unit the shape of orbits produced by
the Law of Universal Gravitation is rigorously derived.

2. Derivation of Orbit Integral

Our notation is shown in Fig. 1. The position of the object is denoted
by the polar coordinates r and θ, respectively, from the force-center and
from the x-axis. Conservation of angular momentum for motion in this
x-y plane gives:

L = mr2dθ/dt = constant,

yielding:

dθ =
L

mr2
dt. (1)

Conservation of energy gives:

E =
m(dr/dt)2

2
+
L2

2I
− γmmE

r
= constant,

r

Origin

Position

of object

q

y

x

Figure 2. Polar coordinates.
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Figure 2. A fragment of a page from Pierce’s Integrals (see
text).

where we have added radial and angular kinetic energies to the gravita-
tional potential energy.1 We write the moment of inertia as I = mr2 and
collect the numerator factors of the gravitational potential energy into a
single symbol:

α ≡ γmmE .

Solving for radial velocity,

dr

dt
=

√

2E

m
− L2

m2r2
+

2α

mr
,

yielding:

dt =
dr

√

(2E/m)− (L2/m2r2) + (2α/mr)
.

Substituting this into Eq. (1), we have:

dθ =
Ldr

mr2
√

(2E/m)− (L2/m2r2) + (2α/mr)
.

We can integrate, with one integration constant, to find the connection
between r and θ at various points on the orbit:

θ − θ0 =

∫

Ldr

mr2
√

(2E/m)− (L2/m2r2) + (2α/mr)
. (2)

3. Equation of the Orbit

There are several ways one can go about finding the integral in
Eq. (2). One is to bring one power of r inside the square root:

θ − θ0 =
L

m

∫

dr

r
√

(2E/m)(r2)− (L2/m2) + (2α/m)(r)
.

1See “Derivation of the Constants of the Motion for Central Forces” (MISN-0-58).
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and look up this form in a table of integrals. For example, Fig. 2 contains
a fragment of a page from Pierce.2 Another way of solving the integral,
not recommended as a general practice unless you have plenty of time
available, is to put the integrand into a trivially-integrable form. In the
present case, this can be effected by defining:

β ≡ L2

mα
and ε ≡

√

1 + (2Eβ/α).

Then one can easily show that Eq. (2) is algebraically equivalent to:

θ − θ0 =

∫

β dr

ε r2

√

1−
(

1

ε
− β

εr

)2
.

Let x ≡ (1/ε)− (β/εr) so dx = (β/εr2) dr and the integral becomes:

θ − θ0 =

∫

dx√
1− x2

.

Finally, let x = sin y so:

dx = cos y dy =
√

1− x2 dy,

and:
dy = (dx)/

√

1− x2.

Then the final form of the integral is:

θ − θ0 =

∫

dy = y = sin−1 x = sin−1

(

1

ε
− β

εr

)

,

or:

sin (θ − θ0) =
1

ε
− β

εr
.

In order to set θ0 at a convenient value, we first solve for r:

r(θ) =
β

1− ε sin (θ − θ0)
.

We will require that θ = 0◦ gives the largest value of radius, an arbitrary
but aesthetically pleasing requirement. Then:

r(0) =
β

1 + ε sin θ0
,

2B. O. Peirce, A Short Table of Integrals, Ginn and Company, Boston (1929), form
#183.
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and it is obvious that we want θ0 = −π/2. Then:

r(θ) =
β

1− ε sin(θ + π/2)
,

or:

r(θ) =
β

1− ε cos θ
. (3)

This is the equation of the orbit.

4. Elliptical Orbits

To show that Eq. (3) corresponds to an ellipse requires that we show
it can be put into the form:

(

x− xc

a

)2

+

(

y − yc

b

)2

= 1,

where xc and yc are the coordinates of the center of the ellipse, and a and b
are the semi-major and semi-minor axes. These quantities are illustrated
in Fig. 3. It is obvious that, in our case, yc = 0. The semi-major axis is
easily calculated:

a =
r(0) + r(π)

2
=

β

1− ε2
. (4)

The semi-minor axis is the value of (y = r sin θ) at the orbit point where
(x = r cos θ) is at the center of the ellipse. This is:

xc = a− r(π) =
r(0)− r(π)

2
=

βε

1− ε2
.

Force

Center

(also the

coordinate

center)

r( )p r(0)
a

b(x ,0)c

x

y

Figure 3. An elliptical orbit about a force center.
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Now xc is also given by:

xc = rc cos θc =
β cos θc

1− ε cos θc

,

so equating the two forms for xc we get:

β cos θc

1− ε cos θc

=
βε

1− ε2
,

and it is obvious by inspection that:

cos θc = ε.

Then the semi-minor axis is:

b = rc sin θc =
β

1− ε cos θc

√

1− cos2 θc =
β√

1− ε2
. (5)

Thus to prove that r(θ) forms an ellipse, we must show that:
(

x− xc

a

)2

+
(y

b

)2

= 1,

where

x = r cos θ =
β cos θ

1− ε cos θ
, y = r sin θ =

β sin θ

1− ε cos θ
,

and:

xc =
βε

1− ε2
; a =

β

1− ε2
; b =

β√
1− ε2

.

This demonstration of algebraic manipulation is left to the reader to com-
plete.3 We should also note the alternative forms,

a =
β

1− ε2
= − α

2E
=

α

2|E| ,

and

b =
β√

1− ε2
=

L
√

2m|E|
.

Note that E is negative because the mass m is bound to the force center:
it can not escape unless it achieves positive total energy.4 Also since E is
negative, the eccentricity ε (= cos θc) is between 0 and 1:

ε ≡
√

1 + (2Eβ)/α =
√

1− (2|E|β)/α ≤ 1.

3An “elegant alternative” derivation is given in Classical Mechanics, V. Barger and
M. Olsson, McGraw-Hill, New York (1973), p. 124-126.

4See “Gravitational Potential Energy” (MISN-0-107).
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MODEL EXAM

1. Derive Kepler’s first law, starting from Conservation of Angular Mo-
mentum, Conservation of Energy, and the potential energy func-
tion corresponding to the Law of Universal Gravitation. Use: β ≡
L2/(mα), ε ≡

√

1 + (2Eβ/α), x ≡ (1/ε)− (β/εr).

From B.O.Peirce’s A Short Table of Integrals, Ginn and Company (1929),
with X = a+ bx+ cx2 and q = 4ac− b2:

∫

dx√
X

=
1√
c
log

(√
X + x

√
c+

b

2
√
c

)

.

∫

dx√
X

=
1√
c
sinh−1

(

2cx+ b√
q

)

.

∫

dx√
X

=
−1√
−c sin

−1

(

2cx+ b√−q

)

.

∫

dx

x
√
X

=
1√
−a sin

−1

(

bx+ 2a

x
√−q

)

.

∫

dx

x
√
X

=
−1√
a
sinh−1

(

2a+ bx

x
√
q

)

.

∫

dx

x
√
X

= −2
√
X

bx
, if a = 0.

∫

dx

x2
√
X

= −
√
X

ax
− b

2a

∫

dx

x
√
X
.
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